精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin(π-x)cosx.
(Ⅰ)求f(x)的单调增区间;
(Ⅱ)求f(x)在区间[-
π
6
π
2
]上的最大值和最小值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)由f(x)=2sin(π-x)cosx=sin2x,得出f(x)在[kπ-
π
4
,kπ+
π
4
]递增,(k∈Z),
(Ⅱ)由-
π
6
≤x≤
π
2
⇒-
π
3
≤2x≤π,从而-
3
2
≤sinx≤1,进而求出f(x)在[-
π
6
π
2
]上的最大值和最小值.
解答: 解:(Ⅰ)∵f(x)=2sin(π-x)cosx=sin2x,
∴f′(x)=2cos2x,
令f′(x)≥0,解得:kπ-
π
4
≤x≤kπ+
π
4

∴f(x)在[kπ-
π
4
,kπ+
π
4
]递增,(k∈Z),
(Ⅱ)由-
π
6
≤x≤
π
2
⇒-
π
3
≤2x≤π,
∴-
3
2
≤sinx≤1,
∴f(x)在[-
π
6
π
2
]上的最大值为1,最小值为-
3
2
点评:本题考查了三角函数的性质,函数的最值问题,考查函数的单调性,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2acos2x+bsinxcosx,且f(0)=2,f(
π
3
)=
1
2
+
3
2

(1)求a,b的值;
(2)求f(x)的最大值及取得最大值时x的集合;
(3)写出函数f(x)在[0,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,a5=5,S5=15.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
1
anan+2
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+bx+4
(1)若f(x)为偶函数,求b的值;
(2)若f(x)有零点,求b的取值范围;
(3)求f(x)在区间[-1,1]上的最大值g(b).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b
2x+1+a
是奇函数.
(Ⅰ)求a、b的值;
(Ⅱ)求函数g(x)=(logax)2-logax2-2b在x∈[
1
2
,4]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,∠ABC=45°,AB=SA=SB=2.
(1)证明:SA⊥BC;
(2)求点B到平面SAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}前n项和为Sn,且a3=3,S15=120.
(1)求数列{an}的通项an
(2)设bn=n•2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在一次研究性学习中发现,以下四个式子的值都等于同一个常数.
(1)sin212°+sin248°+sin12°sin48°
(2)sin215°+sin245°+sin15°sin45°
(3)sin2(-12°)+sin272°+sin(-12°)sin72°
(4)sin2(-15°)+sin275°+sin(-15°)sin75°
(Ⅰ)试从上述四个式子中选择一个,求出这个常数
(Ⅱ) 根据(Ⅰ)的计算结果,将该同学的发现推广成三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

若两直线x+y+5a=0与x-y-a=0的交点在曲线y=x2+a上,则a=
 

查看答案和解析>>

同步练习册答案