ÒÑÖªº¯Êýf£¨x£©=
1
2
x2-£¨a-1£©x+alnx£¬ÆäÖг£Êýa¡ÊR£®
£¨¢ñ£©µ±a=6ʱ£¬Çóº¯Êýf£¨x£©µÄ¼«Öµµã£»
£¨¢ò£©Ö¤Ã÷£º¶ÔÈÎÒâx¡Ê[1£¬+¡Þ£©£¬lnx¡Ý
2(x-1)
x+1
ºã³ÉÁ¢£»
£¨¢ó£©¶ÔÓÚº¯Êýf£¨x£©Í¼ÏóÉϵIJ»Í¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨x1£¼x2£©£¬Èç¹ûÔÚº¯Êýf£¨x£©Í¼ÏóÉÏ´æÔÚµãM£¨x0£¬y0£©£¨ÆäÖÐx0¡Ê£¨x1£¬x2£©£©£¬Ê¹µÃÔÚµãM´¦µÄÇÐÏßl¡ÎAB£¬Ôò³ÆÖ±ÏßAB´æÔÚ¡°°éÂÂÇÐÏß¡±£®ÌØ±ðµØ£¬µ±x0=
x1+x2
2
£¬ÓÖ³ÆÖ±ÏßAB´æÔÚ¡°ÖÐÖµ°éÂÂÇÐÏß¡±£®ÊÔÎÊ£ºµ±a=1ʱ£¬¶ÔÓÚº¯Êýf£¨x£©Í¼ÏóÉϲ»Í¬Á½µãA¡¢B£¬Ö±ÏßABÊÇ·ñ´æÔÚ¡°ÖÐÖµ°éÂÂÇÐÏß¡±£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
¿¼µã£ºº¯Êýºã³ÉÁ¢ÎÊÌâ,ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ,ÀûÓõ¼ÊýÑо¿º¯ÊýµÄ¼«Öµ
רÌ⣺µ¼ÊýµÄ×ÛºÏÓ¦ÓÃ
·ÖÎö£º£¨¢ñ£©µ±a=6ʱ£¬Çóº¯Êýµ¼Êý£¬¸ù¾Ýº¯Êý¼«ÖµºÍµ¼ÊýÖ®¼äµÄ¹ØÏµ¼´¿ÉÇóº¯Êýf£¨x£©µÄ¼«Öµµã£»
£¨¢ò£©¹¹Ô캯Êýg£¨x£©=lnx-
2(x-1)
x+1
£¬Çóº¯ÊýµÄµ¼Êý£¬¼´¿ÉÖ¤Ã÷²»µÈʽ£»
£¨¢ó£©¸ù¾Ý¡°ÖÐÖµ°éÂÂÇÐÏß¡±µÄ¶¨Ò壬½áºÏÇÐÏ߯½ÐкÍбÂÊÖ®¼äµÄ¹ØÏµ£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º ½â£º£¨¢ñ£©µ±a=6ʱ£¬f£¨x£©=
1
2
x2-5x+6lnx£¬
f¡ä£¨x£©=x-5+
6
x
=
x2-5x+6
x
£®£¨x£¾0£©£¬
µ±f¡ä£¨x£©=0ʱ£¬½âµÃx=2»òx=3£¬
µ±0£¼x£¼2»òx£¾3ʱ£¬f¡ä£¨x£©£¾0£¬¼´f£¨x£©ÔÚ£¨0£¬2£©£¬£¨3£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
µ±2£¼x£¼3ʱ£¬f¡ä£¨x£©£¼0£¬f£¨x£©ÔÚ£¨2£¬3£©Éϵ¥µ÷µÝ¼õ£¬
¡àx=2Ϊº¯Êýf£¨x£©µÄ¼«´óÖµµã£¬x=3Ϊº¯Êýf£¨x£©µÄ¼«Ð¡Öµµã£®
£¨¢ò£©Áîg£¨x£©=lnx-
2(x-1)
x+1
£¬£¨x¡Ý1£©£¬
Ôòg¡ä£¨x£©=
1
x
-
2(x+1)-2(x-1)
(x+1)2
=
(x-1)2
x(x+1)2
£¬
¡ßx¡Ý1£¬¡àg¡ä£¨x£©¡Ý0£¬
¡àg£¨x£©ÔÚ[1£¬+¡Þ£©ÉϵÝÔö£¬
¡àg£¨x£©¡Ýg£¨1£©=0£¨µ±ÇÒ½öµ±x=1ʱµÈºÅ³ÉÁ¢£©£¬
¼´Ö¤£º¶ÔÈÎÒâx¡Ê[1£¬+¡Þ£©£¬lnx¡Ý
2(x-1)
x+1
ºã³ÉÁ¢£»   
£¨ III£©µ±a=1£¬f£¨x£©=
1
2
x2-+lnx£¬x£¾0£¬
f¡ä£¨x£©=x+
1
x
£¬¼ÙÉ躯Êýf£¨x£©´æÔÚ¡°ÖÐÖµ°éÂÂÇÐÏß¡±£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨x1£¼x2£©£¬M£¨x0£¬y0£©ÊÇÇúÏßy=f£¨x£©ÉϵIJ»Í¬µã£¬ÇÒ0£¼x1£¼x2£¬x0=
x1+x2
2
£¬
ÔòÖ±ÏßABµÄбÂÊ£ºkAB=
y2-y1
x2-x1
=
1
2
x22+lnx2-
1
2
x12-lnx1
x2-x1
=
1
2
£¨x1+x2£©+
lnx2-lnx1
x2-x1
£¬
ÇúÏßÔÚµãM£¨x0£¬y0£©´¦µÄÇÐÏßбÂÊ£ºk=f¡ä£¨x0£©=f¡ä£¨
x1+x2
2
£©=
x1+x2
2
+
2
x1+x2
£¬
ÒÀÌâÒ⣺kAB=k£¬¼´
1
2
£¨x1+x2£©+
lnx2-lnx1
x2-x1
=
x1+x2
2
+
2
x1+x2
£¬
»¯¼òµÃ
lnx2-lnx1
x2-x1
=
2
x1+x2
£¬
¼´ln
x2
x1
=
2(x2-x1)
x1+x2
=
2(
x2
x1
-1)
x2
x1
+1
£¬
 Éèt=
x2
x1
£¬Ôòt£¾1£¬ÉÏʽ»¯Îªlnt=
2(t-1)
t+1
£¬
ÓÉ£¨2£©Öªt£¾1ʱ£¬lnx£¾
2(x-1)
x+1
ºã³ÉÁ¢£®
¡àÔÚ£¨1£¬+¡Þ£©ÄÚ²»´æÔÚt£¬Ê¹µÃlnt=
2(t-1)
t+1
³ÉÁ¢£®
×ÛÉÏËùÊö£¬¼ÙÉè²»³ÉÁ¢£®ËùÒÔ£¬º¯Êýf£¨x£©²»´æÔÚ¡°ÖÐÖµ°éÂÂÇÐÏß¡±£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýµÄ¼«ÖµºÍµ¼ÊýµÄ¹ØÏµ£¬×ۺϿ¼²éµ¼ÊýµÄÓ¦Ó㬿¼²éѧÉúµÄÔËËãÄÜÁ¦£¬×ÛºÏÐÔ½ÏÇ¿£¬ÔËËãÁ¿½Ï´ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¡÷ABCÖУ¬AB=AC=2£¬BC=2
3
£¬µãD ÔÚBC±ßÉÏ£¬¡ÏADC=45¡ã£®
£¨1£©ÇóCµÄ´óС£»
£¨2£©ÇóADµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬a¡¢b¡¢c·Ö±ðÔÚ¸÷½ÇµÄ¶Ô±ß£®
£¨1£©Ö¤Ã÷£º¹ØÓÚxµÄ·½³Ìx2+£¨ccosB£©x-a=0ÓÐÁ½¸ö²»ÏàµÈµÄʵ¸ù£»
£¨2£©ÈôÉÏÊö·½³ÌµÄÁ½¸ùÖ®ºÍµÈÓÚÁ½¸ùÖ®»ý£¬Ö¤Ã÷£º¡÷ABCΪֱ½ÇÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôx¡Ê[-
¦Ð
3
£¬
¦Ð
4
]£¬Çóº¯Êýy=
2
cos2x+1
+2tanx+1µÄ×îÖµ¼°ÏàÓ¦µÄxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈýÀâÖùABC-A1B1C1ÖУ¬µ×Ãæ±ß³¤ºÍ²àÀⳤ¶¼ÏàµÈ£¬¡ÏBAA1=¡ÏCAA1=60¡ã£¬ÇóÖ¤ËıßÐÎB1BCC1ΪÕý·½ÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÕýÈýÀâÖùABC-A1B1C1ÄÚ½ÓÓڰ뾶Ϊ1µÄÇò£¬Ôòµ±¸ÃÀâÖùÌå»ý×î´óʱ£¬¸ßh=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐÃüÌ⣺
¢Ù
a
b
£¾0ÊÇ
a
b
µÄ¼Ð½ÇΪÈñ½ÇµÄ³äÒªÌõ¼þ£»
¢ÚÈôf£¨x£©ÔÚRÉÏÂú×ãf£¨x-2£©=-f£¨x£©£¬Ôòf£¨x£©ÊÇÒÔ4ΪÖÜÆÚµÄÖÜÆÚº¯Êý£»
¢Ûº¯Êýf£¨x£©=
(
1
2
)x-1£¬x¡Ü0
log2x£¬x£¾0
£¬Ôòf£¨f£¨
1
2
£©£©µÄÖµÊÇ1£»
¢Ü·½³Ìlnx+x=4ÓÐÇÒ½öÓÐÒ»¸öʵÊý¸ù£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
 
£®£¨Ð´³öËùÓÐÕæÃüÌâµÄ´úºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»¸öÀâÖùÖÁÉÙÓУ¨¡¡¡¡£©¸öÃæ£¬ÃæÊý×îÉÙµÄÒ»¸öÀâ×¶ÓУ¨¡¡¡¡£©¸ö¶¥µã£¬¶¥µã×îÉÙµÄÒ»¸öÀą̂ÓУ¨¡¡¡¡£©Ìõ²àÀ⣮
A¡¢8  4  6
B¡¢5  4  3
C¡¢4  4  4
D¡¢4  6  3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ʵÊýx£¬yÂú×ã
x-2y+1¡Ý0
|x|-y-1¡Ü0
£¬Ôòz=
2x+y+2
x
µÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A¡¢[0£¬
10
3
]
B¡¢£¨-¡Þ£¬0]¡È[
10
3
£¬+¡Þ£©
C¡¢[2£¬
10
3
]
D¡¢£¨-¡Þ£¬2]¡È[
10
3
£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸