10£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¶Ì°ëÖ᳤Ϊ$\sqrt{2}$£®
£¨¢ñ£© ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£© ÒÑ֪бÂÊΪ$\frac{1}{2}$µÄÖ±Ïßl½»ÍÖÔ²CÓÚÁ½¸ö²»Í¬µãA£¬B£¬µãMµÄ×ø±êΪ£¨2£¬1£©£¬ÉèÖ±ÏßMAÓëMBµÄбÂÊ·Ö±ðΪk1£¬k2£®
¢ÙÈôÖ±Ïßl¹ýÍÖÔ²CµÄ×󶥵㣬Çó´Ëʱk1£¬k2µÄÖµ£»
¢ÚÊÔ̽¾¿k1+k2ÊÇ·ñΪ¶¨Öµ£¿²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Í¨¹ýÍÖÔ²µÄÀëÐÄÂÊÒÔ¼°$b=\sqrt{2}$£¬a2=b2+c2£¬Çó³öa£¬b£¬¼´¿ÉÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©¢ÙÈôÖ±Ïß¹ýÍÖÔ²µÄ×󶥵㣬д³öÖ±Ïߵķ½³ÌÓëÍÖÔ²ÁªÁ¢·½³Ì£¬Çó³öÖ±ÏßµÄбÂÊ£¬ÍƳö½á¹û£®
¢Úk1+k2 Îª¶¨Öµ£¬ÇÒk1+k2=0£¬Ö¤Ã÷ÈçÏ£ºÉèÖ±ÏßÔÚyÖáÉϵĽؾàΪm£¬ÍƳöÖ±Ïߵķ½³Ì£¬È»ºóÁ½ÌõÖ±ÏßÓëÍÖÔ²ÁªÁ¢£¬ÉèA£¨x1£¬y1£©£®B£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨ÀíÒÔ¼°ÅбðʽÇó³ök1+k2£¬È»ºó»¯¼òÇó½â¼´¿É£®

½â´ð ±¾ÌâÂú·Ö£¨12·Ö£©£®
½â£º£¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬¡à$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬ÓÖ$b=\sqrt{2}$£¬a2=b2+c2£¬
½âµÃa2=8£¬b2=2£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$£®¡­£¨3·Ö£©
£¨¢ò£©¢ÙÈôÖ±Ïß¹ýÍÖÔ²µÄ×󶥵㣬ÔòÖ±Ïߵķ½³ÌÊÇl£ºy=$\frac{1}{2}x+\sqrt{2}$£¬
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}y=\frac{1}{2}x+\sqrt{2}\\ \frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x}_{1}=0\\{y}_{1}=\sqrt{2}\end{array}\right.$»ò$\left\{\begin{array}{l}{x}_{2}=-2\sqrt{2}\\{y}_{2}=0\end{array}\right.$£¬
¹Ê${k}_{1}=-\frac{\sqrt{2}-1}{2}$£¬${k}_{2}=\frac{\sqrt{2}-1}{2}$£®¡­£¨6·Ö£©
¢Úk1+k2 Îª¶¨Öµ£¬ÇÒk1+k2=0£®¡­£¨7·Ö£©
Ö¤Ã÷ÈçÏ£º
ÉèÖ±ÏßÔÚyÖáÉϵĽؾàΪm£¬ËùÒÔÖ±Ïߵķ½³ÌΪ$y=\frac{1}{2}x+m$£®
ÓÉ$\left\{\begin{array}{l}y=\frac{1}{2}x+m\\ \frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1\end{array}\right.$£¬µÃx2+2mx+2m2-4=0£®
µ±¡÷=4m2-8m2+16£¾0£¬¼´-2£¼m£¼2ʱ£¬Ö±ÏßÓëÍÖÔ²½»ÓÚÁ½µã¡­£¨8·Ö£©
ÉèA£¨x1£¬y1£©£®B£¨x2£¬y2£©£¬Ôòx1+x2=-2m£®${x}_{1}•{x}_{2}=2{m}^{2}-4$¡­£¨9·Ö£©
ÓÖ${k}_{1}=\frac{{y}_{1}-1}{{x}_{1}-2}$£¬${k}_{2}=\frac{{y}_{2}-1}{{x}_{2}-2}$
¹Ê${k}_{1}+{k}_{2}=\frac{{y}_{1}-1}{{x}_{1}-2}+\frac{{y}_{2}-1}{{x}_{2}-2}$=$\frac{{£¨y}_{1}-1£©£¨{x}_{2}-2£©+£¨{y}_{2}-1£©{£¨x}_{1}-2£©}{{£¨x}_{1}-2£©£¨{x}_{2}-2£©}$£®¡­£¨10·Ö£©
ÓÖ${y}_{1}=\frac{1}{2}{x}_{1}+m$£¬${y}_{2}=\frac{1}{2}{x}_{2}+m$£¬
ËùÒÔ£¨y1-1£©£¨x2-2£©+£¨y2-1£©£¨x1-2£©=$£¨\frac{1}{2}{x}_{1}+m-1£©£¨{x}_{2}-2£©+£¨\frac{1}{2}{x}_{2}+m-1£©£¨{x}_{1}-2£©$
=x1•x2+£¨m-2£©£¨x1+x2£©-4£¨m-1£©
=2m2-4+£¨m-2£©£¨-2m£©-4£¨m-1£©=0£¬
¹Êk1+k2=0£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄ×ÛºÏÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªy=2cos2x+5sinx-4£¨$\frac{¦Ð}{3}$¡Üx¡Ü$\frac{5¦Ð}{6}$£©£¬ÇóÆä×î´óÖµºÍ×îСֵ¡¢²¢Ð´³öÈ¡×îֵʱxµÄ¼¯ºÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Éèx1£¬x2ÊǺ¯Êýf£¨x£©=£¨a+1£©x3+bx2-x£¨a¡Ý0£¬b£¾0£©µÄÁ½¸ö¼«Öµµã£¬ÇÒ|x1|+|x2|=2$\sqrt{2}$£¬ÔòʵÊýbµÄ×îСֵΪ£¨¡¡¡¡£©
A£®4$\sqrt{6}$B£®$\sqrt{15}$C£®3$\sqrt{2}$D£®2$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÈçÓÒͼ£¬ÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬PΪÏß¶ÎA1BÉϵ͝µã£¨²»º¬¶Ëµã£©£¬ÏÂÁнáÂÛ£º
¢ÙD1BÓëÆ½ÃæABCDËù³É½ÇΪ45¡ã
¢ÚDC1¡ÍD1P
¢Û¶þÃæ½Ç A-A1P-D1µÄ´óСΪ90¡ã
¢ÜAP+PD1µÄ×îСֵΪ$\sqrt{2+\sqrt{2}}$
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅÊǢڢۢܣ®£¨Ð´³öËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÔ²F1£º£¨x+1£©2+y2=r2ÓëÔ²F2£º£¨x-1£©2+y2=£¨4-r£©2£¨1¡Ür¡Ü3£©£¬µ±rµÄÖµ±ä»¯Ê±£¬Á½Ô²µÄ¹«¹²µãµÄ¹ì¼£ÎªÇúÏßE£¬¹ýF2µÄÖ±ÏßlÓëÇúÏßEÏཻÓÚ²»Í¬µÄÁ½µãM¡¢N£®
£¨1£©ÇóÇúÏßEµÄ·½³Ì£»
£¨2£©ÊÔÎÊ¡÷F1MNµÄÄÚÇÐÔ²µÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ¼°´ËʱֱÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¸´Êýz1=1+2i£¬z2=-2+i£¬z3=-$\sqrt{3}$-$\sqrt{2}$i£¬z4=$\sqrt{3}$-$\sqrt{2}$i£¬z1£¬z2£¬z3£¬z4ÔÚ¸´Æ½ÃæÄڵĶÔÓ¦µã·Ö±ðÊÇA£¬B£¬C£¬D£¬Ôò¡ÏABC+¡ÏADC=225¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÒ»¸ö¶àÃæÌåµÄÄÚÇÐÇòµÄ°ë¾¶Îª1£¬¶àÃæÌåµÄ±íÃæ»ýΪ18£¬Ôò´Ë¶àÃæÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®18B£®12C£®6D£®12¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂʵÈÓÚ$\frac{1}{2}$£¬ËüµÄÒ»¸ö¶¥µãÇ¡ºÃÊÇÅ×ÎïÏßx2=8$\sqrt{3}$yµÄ½¹µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©µãP£¨2£¬3£©£¬Q£¨2£¬-3£©ÔÚÍÖÔ²ÉÏ£¬A¡¢BÊÇÍÖÔ²ÉÏλÓÚÖ±ÏßPQÁ½²àµÄ¶¯µã£®
¢ÙÈôÖ±ÏßABµÄбÂÊΪ$\frac{1}{2}$£¬ÇóËıßÐÎAPBQÃæ»ýµÄ×î´óÖµ£»
¢Úµ±A¡¢BÔ˶¯Ê±£¬Âú×ãÓÚ¡ÏAPQ=¡ÏBPQ£¬ÊÔÎÊÖ±ÏßABµÄбÂÊÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬ÇëÇó³ö¶¨Öµ£¬Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªaΪ³£Êý£¬º¯Êýf£¨x£©=x£¨lnx-ax£©ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¨x1£¼x2£©£¬Ôò£¨¡¡¡¡£©
A£®f£¨x1£©£¼0£¬f£¨x2£©£¼-$\frac{1}{2}$B£®f£¨x1£©£¾0£¬f£¨x2£©£¾-$\frac{1}{2}$C£®f£¨x1£©£¼0£¬f£¨x2£©£¾-$\frac{1}{2}$D£®f£¨x1£©£¾0£¬f£¨x2£©£¼-$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸