精英家教网 > 高中数学 > 题目详情
3.函数y=f(x)的图象如图所示,则f(x)的解析式可以为(  )
A.$f(x)=\frac{1}{x}-{x^2}$B.$f(x)=\frac{1}{x}-{x^3}$C.$f(x)=\frac{1}{x}-{e^x}$D.$f(x)=\frac{1}{x}-lnx$

分析 根据定义域、零点个数、单调性和极限等方面逐个判断即可.

解答 解:对于A,当x→-∞时,f(x)→-∞,不符合题意;
对于B,令f(x)=0得x4=1,∴x=±1,即f(x)有两个零点,不符合题意;
对于D,f(x)的定义域为(0,+∞),不符合题意;
故选C.

点评 本题考查了函数图象的意义,函数单调性、零点个数的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的离心率为$\sqrt{5}$,则抛物线y2=4x的焦点到双曲线的渐近线的距离是(  )
A.$\frac{{\sqrt{5}}}{10}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$\frac{{4\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|-1<x<2},B={x|0<x<2},则∁AB=(  )
A.(-1,0)B.(-1,0]C.(0,2)D.[0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{1}{x}-{2^x}$,则$f(\frac{1}{2})$>f(1)(填“>”或“<”);f(x)在区间$(\frac{n-1}{n},\frac{n}{n+1})$上存在零点,则正整数n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={-2,0,1},B={x|x<-1或x>0},则A∩B=(  )
A.{-2}B.{1}C.{-2,1}D.{-2,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知O为原点,点P为直线2x+y-2=0上的任意一点.非零向量$\overrightarrow{a}$=(m,n).若$\overrightarrow{OP}$•$\overrightarrow{a}$恒为定值,则$\frac{m}{n}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知等差数列{an}的公差为2,且a1,a2,a4成等比数列,则a1=2;数列{an}的前n项和Sn=n2+n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数f(x)=cos2x图象向左平移φ(0<φ<$\frac{π}{2}$)个单位后得到函数g(x)的图象,若函数g(x)在区间[-$\frac{π}{6}$,$\frac{π}{6}$]上单调递减,且函数g(x)的最大负零点在区间(-$\frac{π}{6}$,0)上,则φ的取值范围是(  )
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{3}$,$\frac{5π}{12}$)C.($\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}是首项为32的正项等比数列,Sn是其前n项和,且$\frac{{S}_{7}-{S}_{5}}{{S}_{5}-{S}_{3}}$=$\frac{1}{4}$,若Sk≤4•(2k-1),则正整数k的最小值为4.

查看答案和解析>>

同步练习册答案