分析 利用两角和与差的三角函数求出角的正切函数值,利用同角三角函数基本关系式化简所求的表达式为正弦函数的形式,代入求解即可.
解答 解:由$tan({\frac{π}{4}+α})=2$,即$\frac{1+tanα}{1-tanα}=2$,解得$tanα=\frac{1}{3}$,
所以$sin2α=\frac{2sinαcosα}{{{{sin}^2}α+{{cos}^2}α}}=\frac{2tanα}{{1+{{tan}^2}α}}=\frac{{\frac{2}{3}}}{{1+\frac{1}{9}}}=\frac{3}{5}$.
故答案为:$\frac{3}{5}$.
点评 本题考查两角和与差的三角函数,同角三角函数基本关系式的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | y<z<x | B. | z<y<x | C. | x<y<z | D. | y<x<z |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 相离 | B. | 相交 | C. | 相切 | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,1] | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com