分析 (1)求导函数,由f′(x)>0,可得函数的单调增区间;由f′(x)<0,可得函数的单调减区间;
(2)求导函数,根据f(x)在区间[$\frac{1}{e}$,e]上是增函数,转化为(x-1)2≤1-a在区间[$\frac{1}{e}$,e]上恒成立,求出x∈[$\frac{1}{e}$,e]时,(x-1)2的最大值,即可求得实数a的取值范围.
解答 解:(1)当a=-15时,f(x)=(x2-15)e-x,
求导函数,可得f′(x)=-(x-5)(x+3)e-x,
令f′(x)=0得x=-3或x=5,
由f′(x)>0,可得-3<x<5;由f′(x)<0,可得x<-3或x>5,
∴函数的单调增区间为(-3,5),减区间为(-∞,-3),(5,+∞);
(2)f′(x)=-(x2-2x+a)e-x,
∵f(x)在区间[$\frac{1}{e}$,e]上是增函数,
∴f′(x)=-(x2-2x+a)e-x≥0在区间[$\frac{1}{e}$,e]上恒成立,
∴(x-1)2≤1-a在区间[$\frac{1}{e}$,e]上恒成立,
当x∈[$\frac{1}{e}$,e]时,(x-1)2的最大值为(e-1)2,
∴(e-1)2≤1-a,
∴a≤2e-e2,
∴实数a的取值范围为(-∞,2e-e2].
点评 本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查不等式的证明.恒成立问题通常利用分离参数法,利用函数的最值求解.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com