精英家教网 > 高中数学 > 题目详情

【题目】某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学所需时间的范围是,样本数据分组为

(1)求直方图中x的值;

(2)如果上学所需时间不少于1小时的学生可申请在学校住宿,若该学校有600名新生,请估计新生中有多少名学生可以申请住宿;

(3)由频率分布直方图估计该校新生上学所需时间的平均值.

【答案】(1) (2) 72名(3) 33.6分钟.

【解析】

1)利用概率和为列方程即可得解。

2)计算出新生上学时间不少于1小时的频率为,问题得解。

3)直接利用均值计算公式求解即可。

解:(1)由直方图可得:,解得.

(2)新生上学时间不少于1小时的频率为

因为,所以600名新生中有72名学生可以申请住宿.

(3)由题可知 分钟.

故该校新生上学所需时间的平均值为33.6分钟.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于茎叶图的说法,结论错误的一个是( )

A. 甲的极差是29 B. 甲的中位数是25

C. 乙的众数是21 D. 甲的平均数比乙的大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上是单调增函数,则实数的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.

(1)求证:AB∥FG;
(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的三个顶点坐标分别为

(1)求AC边上的中线所在直线方程;

(2)求AB边上的高所在直线方程;

(3)求BC边的垂直平分线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中.已知向量 ,| |=| |=1, =0,点Q满足 = + ),曲线C={P| = cosθ+ sinθ,0≤θ≤2π},区域Ω={P|0<r≤| |≤R,r<R}.若C∩Ω为两段分离的曲线,则(
A.1<r<R<3
B.1<r<3≤R
C.r≤1<R<3
D.1<r<3<R

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求sin(A+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机调查名性别不同的大学生是否喜欢打羽毛球,得到如下列联表:

总计

喜欢打羽毛球

不喜欢打羽毛球

总计

临界值表:

参考公式:(其中

参照临界值表,下列结论正确的是(

A. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别有关”

B. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别无关”

C. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别有关”

D. 在犯错误的概率不超过的前提下,认为“喜欢打羽毛球与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取m个作为样本,称出它们的重量(单位:克),重量分组区间为,由此得到样本的重量频率分布直方图(如图).

(1)根据样本数据,试估计盒子中小球重量的中位数与平均值(精确到0.01);

(2)从盒子装的大量小球中,随机抽取3个小球,其中重量在内的小球个数为,求的分布列和数学期望。

查看答案和解析>>

同步练习册答案