精英家教网 > 高中数学 > 题目详情
设△ABC的内角A,B,C的对边分别为a,b,c,且bcosC=(2a-c)cosB.
(Ⅰ)求B的大小;
(Ⅱ)若b=
3
,则a+c的最大值.
考点:余弦定理,正弦定理
专题:解三角形
分析:(Ⅰ)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式化简,求出cosB的值,即可确定出B的度数;
(Ⅱ)利用余弦定理列出关系式,将b,cosB的值代入,并利用基本不等式求出a+c的最大值即可.
解答: 解:(Ⅰ)将已知等式bcosC=(2a-c)cosB,
利用正弦定理得sinBcosC=(2sinA-sinC)cosB,
整理得:sinBcosC+sinCcosB=2sinAcosB,
∴sin(B+C)=2sinAcosB,
又sin(B+C)=sinA≠0,
∴cosB=
1
2

又0<B<π,
∴B=
π
3

(Ⅱ)∵b=
3
,cosB=
1
2

∴由余弦定理可知b2=a2+c2-2accosB,即3=a2+c2-ac=(a+c)2-3ac≥(a+c)2-3(
a+c
2
2,即a+c≤2
3

当且仅当a=c=
3
时取等号,
则a+c的最大值为2
3
点评:此题考查了正弦、余弦定理,以及基本不等式的运用,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

与同一平面平行的两条直线(  )
A、平行B、相交
C、异面D、平行或相交或异面

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+3ax2+3bx+c在x=2处有极值,且其图象在x=1处的切线与直线6x+2y+5=0平行.
(1)求f(x)的解析式(含字母c);
(2)求函数的极大值与极小值的差.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆P与圆O1:x2-4x+y2+3=0外切,与直线l:x=-1相切,动圆圆心P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)通过(1,0)的直线与曲线C交于A,B两点,O为坐标原点,若AO,BO所在直线分别与直线y=x+4交于点E、F,求|EF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用循环语句描述计算1+
1
2
+
1
22
+
1
23
+…+
1
29
的值的一个程序,要求写出算法,并用基本语句编写程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a(x-1)
x
(x>0,a∈R)

(1)试求f(x)的单调区间;
(2)求证:不等式
1
lnx
-
1
x-1
1
2
对于x∈(1,2)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四个数依次成等差数列,且四个数的平方和为94,首尾两数之积比中间两数之积少18,求此等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2+ax(a∈R).
(1)当a=-9时,求函数f(x)的极大值;
(2)当a<3时,试求函数f(x)的单调增区间;
(3)若函数f(x)的图象与函数φ(x)=-xlnx的图象有三个不同的交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x-e
x
a
(a>0)

(1)曲线y=f(x)在x=0处的切线恰与直线x-2y+1=0垂直,求a的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求证:
x1
x2
e
a

查看答案和解析>>

同步练习册答案