精英家教网 > 高中数学 > 题目详情
(本题满分12分)在正四棱锥中,侧棱的长为所成的角的大小等于

(1)求正四棱锥的体积;
(2)若正四棱锥的五个顶点都在球的表面上,求此球的半径.
(1) (立方单位)(2)

试题分析:(1)取的中点,记正方形对角线的交点为,连,则


,得.                        ……4分


正四棱锥的体积等于(立方单位).                      ……8分
(2)连,设球的半径为,则
中有,得。                         ……12分
点评:对于此题,关键是找清楚边角之间的关系,套用公式计算即可.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图所示,四棱锥中,为正方形, 分别是线段的中点. 求证:
(1)//平面 ; 
(2)平面⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.

(1)证明:平面PBE平面PAB;
(2)求PC与平面PAB所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条不同的直线,两个不同的平面,则下列命题中正确的是(     )
A.若
B.若
C.若
D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图,在长方体ABCD-A1B1C1D1中,E, F分别是棱BC,CC1上的点,CF="AB=2CE," AB:AD:AA1=1:2:4.

(Ⅰ)求异面直线EF与A1D所成角的余弦值;
(Ⅱ)证明AF⊥平面A1ED;
(Ⅲ)求二面角A1-ED-F的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,的中点.

(1)求证:平行平面
(2)求二面角的余弦值;
(3)试问线段上是否存在点,使角?若存在,确定点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
已知是四边形所在平面外一点,四边形的菱形,侧面
为正三角形,且平面平面.
(1)若边的中点,求证:平面.
(2)求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图4,已知四棱锥,底面是正方形,,点的中点,点的中点,连接,.

(1)求证:
(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果空间中若干点在同一平面内的射影在一条直线上,那么这些点在空间的位置是__________.

查看答案和解析>>

同步练习册答案