精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图所示,四棱锥中,为正方形, 分别是线段的中点. 求证:
(1)//平面 ; 
(2)平面⊥平面.
(1)证明见解析(2) 证明见解析

试题分析:(1)分别是线段的中点, 
又∵为正方形, 
平面平面
//平面.                                                   ……6分
(2)∵,又,
.            
为正方形,∴,
,∴⊥平面,
平面
∴平面⊥平面.                                             ……12分
点评:证明空间线线、线面、面面平行或垂直时,要灵活运用判定定理和性质定理,先搞清楚证明需要的条件,再去找条件,特别注意的是定理中的隐含条件也是不可缺少的,要把定理需要的条件一一列清楚.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 如图,在直三棱柱中,分别是的中点,点上,
 
求证:(1)EF∥平面ABC;    
(2)平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:如图,在四棱锥中,四边形为正方形,,且中点.
(Ⅰ)证明://平面
(Ⅱ)证明:平面平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在正四棱锥中,侧棱的长为所成的角的大小等于

(1)求正四棱锥的体积;
(2)若正四棱锥的五个顶点都在球的表面上,求此球的半径.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

图形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中点.AC,BD交于O点.

(1)二面角Q-BD-C的大小:
(2)求二面角B-QD-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于(  )
A.ACB.BDC.A1DD.A1D

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个互不重合的平面,是一条直线,则下列命题中正确的是(   )
A.若的所成角相等,则B.若,则
C.若上有两个点到的距离相等,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面平面,线段与线段交于点,若,则= (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中“可换命题”的是(     )
A.①②B.①C.①③D.③④

查看答案和解析>>

同步练习册答案