2£®Ä³Ñ§Ð£ÊµÑéÊÒÓÐŨ¶ÈΪ2g/mlºÍ0.2g/mlµÄÁ½ÖÖKÈÜÒº£®ÔÚʹÓÃ֮ǰÐèÒªÖØÐÂÅäÖÆÈÜÒº£¬¾ßÌå²Ù×÷·½·¨ÎªÈ¡Å¨¶ÈΪ2g/mlºÍ0.2g/mlµÄÁ½ÖÖKÈÜÒº¸÷300ml·Ö±ð×°ÈëÁ½¸öÈÝ»ý¶¼Îª500mlµÄ×¶ÐÎÆ¿A£¬BÖУ¬ÏÈ´ÓÆ¿AÖÐÈ¡³ö100mlÈÜÒº·ÅÈëBÆ¿ÖУ¬³ä·Ö»ìºÏºó£¬ÔÙ´ÓBÆ¿ÖÐÈ¡³ö100mlÈÜÒº·ÅÈëAÆ¿ÖУ¬ÔÙ³ä·Ö»ìºÏ£®ÒÔÉÏÁ½´Î»ìºÏ¹ý³ÌÍê³ÉºóËãÍê³ÉÒ»´Î²Ù×÷£®ÉèÔÚÍê³ÉµÚn´Î²Ù×÷ºó£¬AÆ¿ÖÐÈÜҺŨ¶ÈΪang/ml£¬BÆ¿ÖÐÈÜҺŨ¶ÈΪbng/ml£®£¨lg2¡Ö0.301£¬lg3¡Ö0.477£©
£¨1£©Çë¼ÆËãa1£¬b1£¬²¢Åж¨ÊýÁÐ{an-bn}ÊÇ·ñΪµÈ±ÈÊýÁУ¿ÈôÊÇ£¬Çó³öÆäͨÏʽ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©ÈôҪʹµÃA£¬BÁ½¸öÆ¿ÖеÄÈÜҺŨ¶ÈÖ®²îСÓÚ0.01g/ml£¬ÔòÖÁÉÙÒª¾­¹ý¼¸´Î£¿

·ÖÎö £¨1£©Í¨¹ýÅäÖÆÈÜÒºµÄ²½Ö裬¿ÉµÃb1¡¢a1£¬bn¡¢an£¬½ø¶ø¿ÉµÃan-bnµÄ±í´ïʽ£¬ÀûÓù«Ê½¼ÆËã¼´¿É£»
£¨2£©½â²»µÈʽ0.9$£¨\frac{1}{2}£©^{n-1}$£¼10-2£¬¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬¿ÉµÃb1=$\frac{0.2¡Á300+2¡Á100}{300+100}$=0.65g/ml£¬
a1=$\frac{0.65¡Á100+2¡Á200}{200+100}$=1.55g/ml£®
µ±n¡Ý2ʱ£¬bn=$\frac{1}{400}£¨300{b}_{n-1}+100{a}_{n-1}£©$=$\frac{1}{4}$£¨3bn-1+an-1£©£¬
an=$\frac{1}{300}$£¨200an-1+100bn£©=$\frac{1}{4}$£¨3an-1+bn-1£©£¬
¡àan-bn=$\frac{1}{2}$£¨an-1-bn-1£©£¬
¡àµÈ±ÈÊýÁÐ{an-bn}µÄ¹«±È$\frac{1}{2}$£¬
ÆäÊ×Ïîa1-b1=1.55-0.65=0.9£¬
¡àan-bn=0.9•$£¨\frac{1}{2}£©^{n-1}$£»
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬ÎÊÌâת»¯Îª½â²»µÈʽ0.9•$£¨\frac{1}{2}£©^{n-1}$£¼10-2£¬
¡àn£¾1+$\frac{1+2lg3}{lg2}$¡Ö7.49£¬
¡àÖÁÉÙÒª²Ù×÷8´Î²ÅÄÜ´ïµ½ÒªÇó£®

µãÆÀ ±¾ÌâÊÇÒ»µÀ¹ØÓÚÊýÁеÄÓ¦ÓÃÌ⣬¿¼²éÊýÁеĻù±¾ÐÔÖÊ¡¢Í¨Ïʽ£¬Éæ¼°µ½¶ÔÊýµÄÔËËãµÈ֪ʶ£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®É躯Êýf£¨x£©=-x2+6x-4lnxÔÚµãP£¨x0£¬f£¨x0£©£©´¦µÄÇÐÏß·½³ÌΪl£ºy=g£¨x£©£¬Èô?x¡Ê£¨0£¬x0£©¡È£¨x0£¬+¡Þ£©£¬¶¼ÓÐ$\frac{f£¨x£©-g£¨x£©}{x-{x}_{0}}$£¼0³ÉÁ¢£¬Ôòx0µÄֵΪ$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®£¨1£©ÒÑÖªf£¨cosx£©=cos17x£¬ÇóÖ¤£ºf£¨sinx£©=sin17x£»
£¨2£©¶ÔÓÚÔõÑùµÄÕûÊýn£¬²ÅÄÜÓÉf£¨sinx£©=sinnxÍÆ³öf£¨cosx£©=cosnx£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ¡¢ÒÑÖªÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AB=4£¬AC=BC=3£¬DΪABµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºCD¡ÍA1D£»
£¨¢ò£©ÈôAB1¡ÍA1C£¬Çó¶þÃæ½ÇA1-CD-B1µÄÆ½Ãæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªf£¨x£©=sin£¨¦Øx+$\frac{¦Ð}{6}$£©£®£¨¦Ø£¾0£©£¬y=f£¨x£©+1µÄͼÏóÓëy=2µÄͼÏóµÄÁ½ÏàÁÚ½»µã¼äµÄ¾àÀëΪ¦Ð£¬ÒªµÃµ½y=f£¨x£©µÄͼÏó£¬Ö»Ðë°Ñy=sin¦ØxµÄͼÏ󣨡¡¡¡£©
A£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»B£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»
C£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»D£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x+y¡Ü1}\\{x+1¡Ý0}\\{x-y¡Ü1}\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=$\frac{y}{x-2}$µÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[-3£¬3]B£®[-2£¬2]C£®[-1£¬1]D£®[-$\frac{2}{3}$£¬$\frac{2}{3}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=$\frac{lnax+1}{x}$ £¨a£¾0£©£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ×î´óÖµ£»
£¨¢ò£©Èç¹û¹ØÓÚxµÄ·½³Ìlnx+1=bxÓÐÁ½½â£¬Ð´³öbµÄȡֵ·¶Î§£¨Ö»Ðèд³ö½áÂÛ£©£»
£¨¢ó£©Ö¤Ã÷£ºµ±k¡ÊN*ÇÒk¡Ý2ʱ£¬ln$\frac{k}{2}$£¼$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+¡­+$\frac{1}{k}$£¼lnk£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª¾ØÕóA=$[\begin{array}{l}{a}&{1}\\{1}&{a}\end{array}]$£¬Ö±Ïßl£ºx-y+4=0ÔÚ¾ØÕóA¶ÔÓ¦µÄ±ä»»×÷ÓÃϱäΪֱÏßl¡ä£ºx-y+2a=0£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©ÇóA2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÉèµãPÔÚÇúÏßy=x2+1£¨x¡Ý0£©ÉÏ£¬µãQÔÚÇúÏßy=$\sqrt{x-1}$£¨x¡Ý1£©ÉÏ£¬Ôò|PQ|µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{2}}{2}$B£®$\frac{3\sqrt{2}}{4}$C£®$\sqrt{2}$D£®$\frac{3\sqrt{2}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸