精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点为F1(-2,0)、F2(2,0),点P(3,
7
)在双曲线C上;
(1)求双曲线C的方程;
(2)求双曲线焦点到其渐近线的距离.
考点:双曲线的简单性质,双曲线的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)利用双曲线的定义求出a,再求出b,即可求双曲线C的方程;
(2)利用点到直线的距离公式,求双曲线焦点到其渐近线的距离.
解答: 解:(1)|PF1|-|PF2|=
25+7
-
1+7
=2
2
=2a,
∴a=
2

∵c=2,∴b=
2

∴双曲线C的方程为
x2
2
-
y2
2
=1

(2)双曲线焦点(2,0),到其渐近线y=x的距离为
2
2
=
2
点评:本题考查双曲线的方程,考查点到直线的距离公式,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=2,则3sin2α-cosαsinα+1=(  )
A、3B、-3C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<π)在一个周期内,当x=-
π
12
时,f(x)取得最小值-2;当x=
12
时,f(x)取得最大值4,试求f(x)的函数表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

从天气网查询到衡水历史天气统计 (2011-01-01到2014-03-01)资料如下:

自2011-01-01到2014-03-01,衡水共出现:多云507天,晴356天,雨194天,雪36天,阴33天,其它2天,合计天数为:1128天.本市朱先生在雨雪天的情况下,分别以
1
2
的概率乘公交或打出租的方式上班(每天一次,且交通方式仅选一种),每天交通费用相应为2元或40元;在非雨雪天的情况下,他以90%的概率骑自行车上班,每天交通费用0元;另外以10%的概率打出租上班,每天交通费用20元.(以频率代替概率,保留两位小数.参考数据:
115
564
≈0.20)
(1)求他某天打出租上班的概率;
(2)将他每天上班所需的费用记为X(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a1=1,a3=7.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)设bn=an•2 an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知:a>0,
1
b
-
1
a
>1,证明
1+a
1
1-b

(2)用反证法证明:若a,b,c均为实数,且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
,求证:a,b,c中至少有一个大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=
8
anan+1
,数列{bn}的前n项和为Sn,当x∈[2,4]时,对于任意的正整数n,不等式x2+mx+m≥Sn恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四边形ABCD是矩形,AB=
2
,BC=
6
,将△ABC沿着对角线AC折起来得到△AB1C,且顶点B1在平面AB=CD上射影O恰落在边AD上,如图所示.
(1)求证:AB1⊥平面B1CD;
(2)求三棱锥B1-ABC的体积VB1-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:(ax-2)(x-2a)>0(a∈R,a≠0)

查看答案和解析>>

同步练习册答案