精英家教网 > 高中数学 > 题目详情
(1)已知:a>0,
1
b
-
1
a
>1,证明
1+a
1
1-b

(2)用反证法证明:若a,b,c均为实数,且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
,求证:a,b,c中至少有一个大于0.
考点:反证法与放缩法,不等式的证明
专题:推理和证明
分析:(1)直接利于已知条件通过分解因式,化简推出结果即可.
(2)用反证法,假设a,b,c都小于或等于0,推出a+b+c的值大于0,出现矛盾,从而得到假设不正确,命题得证.
解答: 证明:(1),∵a>0,
1
b
-
1
a
>1,∴a-b>ab,
∴1+a-b-ab>1,
∴(1+a)(1-b)>1,
∵a>0,∴1-b>0
1+a
1-b
>1

1+a
1
1-b

(2)假设a,b,c都不大于0即a≤0,b≤0,c≤0
根据同向不等式的可加性可得a+b+c≤0①
又a+b+c=x2-2y+
π
2
+y2-2z+
π
3
+z2-2x+
π
6
=(x-1)2+(y-1)2+(z-1)2+π-3>0与①式矛盾.
所以假设不成立,即原命题的结论a,b,c中至少有一个大于0.
点评:本题的考点有分析法、反证法以及放缩法,主要考查用反证法证明数学命题,推出矛盾,是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},满足a2=5,a5=2,则公差d=(  )
A、-1
B、-
3
4
C、
3
4
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
sin(2x+
π
6
).
(1)求f(x)的单调递增区间及对称中心.
(2)求f(x)>
1
4
的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an+1=3an,(n∈N*),且a1=3
(1)求数列{an}的通项公式an
(2)数列{bn}满足bn=log3an,(n∈N*),记cn=an+bn,(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点为F1(-2,0)、F2(2,0),点P(3,
7
)在双曲线C上;
(1)求双曲线C的方程;
(2)求双曲线焦点到其渐近线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a∈R,函数f(x)=
1
3
x3+
1
2
ax2-(a+1)x.
(Ⅰ)若a=0,求函数f(x)的单调递增区间;
(Ⅱ)当x∈[-1,2]时,-1≤f(x)≤
2
3
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,0,-1),
b
=(-1,1,2).
(Ⅰ)若k
a
+
b
a
-2
b
平行,求k的值;
(Ⅱ)若k
a
+
b
a
+3
b
垂直,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2ax+2+b(a>0),若f(x)在区间[0,3]上有最大值10,最小值2.
(1)求a,b的值;
(2)若g(x)=f(x)-mx在[2,4]上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=5,an+1+4an=5
(Ⅰ)求证:{an-1}是等比数列;
(Ⅱ)设数列bn=|an|,求|bn|的前2014项和S2014

查看答案和解析>>

同步练习册答案