分析 求出圆C关于x轴对称圆的方程,设过A的直线方程为y-4=k(x+3),圆心(1,-2)到直线的距离为$\frac{|4k+6|}{\sqrt{{k}^{2}+1}}$≤1,求出k的范围,即可求入射线与x轴交点的横坐标的取值范围.
解答 解:圆C:(x-1)2+(y-2)2=1,关于x轴对称圆的方程为(x-1)2+(y+2)2=1,
设过A的直线方程为y-4=k(x+3),即kx-y+3k+4=0,
圆心(1,-2)到直线的距离为$\frac{|4k+6|}{\sqrt{{k}^{2}+1}}$≤1,
∴-$\frac{8}{5}$-$\frac{\sqrt{51}}{15}$≤k≤-$\frac{8}{5}$+$\frac{\sqrt{51}}{15}$,
∴$\frac{-24-\sqrt{51}}{35}$≤$\frac{1}{k}$≤$\frac{-24+\sqrt{51}}{35}$,
kx-y+3k+4=0,令y=0,
可得x=-3-$\frac{4}{k}$∈[$\frac{-9-4\sqrt{51}}{35}$,$\frac{-9+4\sqrt{51}}{35}$].
点评 本题考查求入射线与x轴交点的横坐标的取值范围,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{1-x}$ | B. | $\frac{1}{(1-x)^{3}}$ | C. | -x | D. | x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8π}{3}$ | B. | 32π | C. | 8π | D. | 8$\sqrt{2}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 某校高三8个班,1班51人,2班53人,3班52人,由此推测各班人数都超过50人 | |
| B. | 由三角形的性质,推测空间四面体的性质 | |
| C. | 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分 | |
| D. | 在数列{an}中,${a_1}=1,{a_n}=\frac{1}{2}({{a_{n-1}}+\frac{1}{{{a_{n-1}}}}})({n≥2})$,通过计算a2,a3,a4推理出{an}的通项公式 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com