精英家教网 > 高中数学 > 题目详情
12.已知点A(-3,4),圆C:(x-1)2+(y-2)2=1,若一光线经过点A并经x轴反射后能经过圆C上的某一点,求入射线与x轴交点的横坐标的取值范围.

分析 求出圆C关于x轴对称圆的方程,设过A的直线方程为y-4=k(x+3),圆心(1,-2)到直线的距离为$\frac{|4k+6|}{\sqrt{{k}^{2}+1}}$≤1,求出k的范围,即可求入射线与x轴交点的横坐标的取值范围.

解答 解:圆C:(x-1)2+(y-2)2=1,关于x轴对称圆的方程为(x-1)2+(y+2)2=1,
设过A的直线方程为y-4=k(x+3),即kx-y+3k+4=0,
圆心(1,-2)到直线的距离为$\frac{|4k+6|}{\sqrt{{k}^{2}+1}}$≤1,
∴-$\frac{8}{5}$-$\frac{\sqrt{51}}{15}$≤k≤-$\frac{8}{5}$+$\frac{\sqrt{51}}{15}$,
∴$\frac{-24-\sqrt{51}}{35}$≤$\frac{1}{k}$≤$\frac{-24+\sqrt{51}}{35}$,
kx-y+3k+4=0,令y=0,
可得x=-3-$\frac{4}{k}$∈[$\frac{-9-4\sqrt{51}}{35}$,$\frac{-9+4\sqrt{51}}{35}$].

点评 本题考查求入射线与x轴交点的横坐标的取值范围,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=x3-3x-a在(1,2)内有零点,则实数a的取值范围是(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知定义在R上的奇函数f(x),若f(x)的导函数f'(x)满足f'(x)<x2+1,则不等式f(x)<$\frac{1}{3}$x3+x的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:$\overrightarrow a$=(-$\sqrt{3}$sinωx,cosωx),$\overrightarrow b$=(cosωx,cosωx),ω>0,记函数f(x)=$\overrightarrow a$•$\overrightarrow b$,且f(x)的最小正周期为π.
(1)求ω的值;
(2)解不等式f(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在如图所示的算法流程图中,输出S的值为(  )
A.11B.12C.13D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=$\frac{1}{1-x}$(x≠0,x≠1),则f{f[f(x)]}的函数表达式是(  )
A.$\frac{1}{1-x}$B.$\frac{1}{(1-x)^{3}}$C.-xD.x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.国防专业越来越受年轻学子的青睐,为了解某市高三报考国防专业学生的身高(单位:cm)情况,现将该市某学校报考国防专业的学生的身高作为样本,获得的数据整理后得到如图所示的频率分布直方图,其中样本数据的分组区间为[165,170),[170,175),[175,180),[180,185),[185,190).已知图中从左至右第一、三、五小组的频率之比为1:3:2,其中第三小组的频数为15.
(1)求该校报考国防专业学生的总人数n;
(2)若用这所学校报考国防专业的学生的身高的样本数据来估计该市的总体情况,现从该市报考国防专业的学生中任选4人,设ξ表示身高不低于175cm的学生人数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知某几何体的三视图如图所示,则该几何体的外接球表面积为(  )
A.$\frac{8π}{3}$B.32πC.D.8$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下面几种推理过程是演绎推理的是(  )
A.某校高三8个班,1班51人,2班53人,3班52人,由此推测各班人数都超过50人
B.由三角形的性质,推测空间四面体的性质
C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分
D.在数列{an}中,${a_1}=1,{a_n}=\frac{1}{2}({{a_{n-1}}+\frac{1}{{{a_{n-1}}}}})({n≥2})$,通过计算a2,a3,a4推理出{an}的通项公式

查看答案和解析>>

同步练习册答案