精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3,x∈R.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)若$x∈[\frac{π}{3},\frac{4π}{3}]$,求f(x)的最大值和最小值,并指出f(x)取得最值时相应x的值.

分析 (Ⅰ)根据正弦函数的图象与性质,即可求出函数f(x)的单调增区间;
(Ⅱ)根据x的取值范围,求出$\frac{x}{2}$+$\frac{π}{6}$的取值范围,从而求出f(x)的最大、最小值以及对应的x值.

解答 解:(Ⅰ)函数f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3,x∈R,
令-$\frac{π}{2}$+2kπ≤$\frac{x}{2}$+$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
得-$\frac{2π}{3}$+2kπ≤$\frac{x}{2}$≤$\frac{π}{3}$+2kπ,k∈Z,
即-$\frac{4π}{3}$+4kπ≤x≤$\frac{2π}{3}$+4kπ,k∈Z;
所以函数f(x)的单调增区间为
[-$\frac{4π}{3}$+4kπ,$\frac{2π}{3}$+4kπ],k∈Z;
(Ⅱ)因为$\frac{π}{3}$≤x≤$\frac{4π}{3}$,
所以$\frac{π}{6}$≤$\frac{x}{2}$≤$\frac{2π}{3}$,
所以$\frac{π}{3}$≤$\frac{x}{2}$+$\frac{π}{6}$≤$\frac{5π}{6}$,
所以当$\frac{x}{2}$+$\frac{π}{6}$=$\frac{5π}{6}$,即$x=\frac{4π}{3}$时,f(x)取得最小值为${[f(x)]_{min}}=\frac{9}{2}$;
当$\frac{x}{2}+\frac{π}{6}=\frac{π}{2}$,即$x=\frac{2π}{3}$时,f(x)取得最大值为[f(x)]max=6.

点评 本题考查了正弦函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知一个球的大圆的周长为6π厘米,则这个球的体积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}x=2-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)若直线l与曲线C交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足:a1=1,an+1=$\sqrt{{a}_{n}^{2}-2{a}_{n}+3}$+b(n∈N*).
(1)若b=1,求证数列{(an-1)2}是等差数列;
(2)若b=-1,求证:a1+a3+…+a2n-1<$\frac{3n+4}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面内,$\overrightarrow{A{B_1}}$⊥$\overrightarrow{A{B_2}}$,|$\overrightarrow{O{B_1}}$|=|$\overrightarrow{O{B_2}}$|=2,$\overrightarrow{AP}$=$\overrightarrow{A{B_1}}$+$\overrightarrow{A{B_2}}$,若|${\overrightarrow{OP}}$|<1,则|${\overrightarrow{OA}}$|的取值范围是($\sqrt{7}$,2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若复数(1+ai)2(i为虚数单位)是纯虚数,则正实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.化简:$\overrightarrow{AB}$+$\overrightarrow{DC}$+$\overrightarrow{BD}$-$\overrightarrow{AC}$=(  )
A.2$\overrightarrow{AD}$B.2$\overrightarrow{DA}$C.$\overrightarrow{0}$D.$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知方程8x2+6kx+2k+1=0有两个实根sinθ和cosθ,则k=-$\frac{10}{9}$.

查看答案和解析>>

同步练习册答案