精英家教网 > 高中数学 > 题目详情
7.在平面内,$\overrightarrow{A{B_1}}$⊥$\overrightarrow{A{B_2}}$,|$\overrightarrow{O{B_1}}$|=|$\overrightarrow{O{B_2}}$|=2,$\overrightarrow{AP}$=$\overrightarrow{A{B_1}}$+$\overrightarrow{A{B_2}}$,若|${\overrightarrow{OP}}$|<1,则|${\overrightarrow{OA}}$|的取值范围是($\sqrt{7}$,2$\sqrt{2}$].

分析 由题意,A、B1、P、B2构成矩形AB1PB2,以AB1,AB2所在直线为坐标轴建立直角坐标系,设出点O的坐标(x,y)与点P的坐标(a,b),求出x2+y2的取值范围,再求|$\overrightarrow{OA}$|的取值范围.

解答 解:根据题意知,A、B1、P、B2构成一个矩形AB1PB2
以AB1,AB2所在直线为坐标轴建立直角坐标系,如图所示;
设|AB1|=a,|AB2|=b,点O的坐标为(x,y),则点P的坐标为(a,b);
B1(a,0),B2(0,b),
由|$\overrightarrow{{OB}_{1}}$|=|$\overrightarrow{{OB}_{2}}$|=2,得$\left\{\begin{array}{l}{(x-a)^{2}+{y}^{2}=4}\\{{x}^{2}+(y-b)^{2}=4}\end{array}\right.$,则$\left\{\begin{array}{l}{(x-a)^{2}=4-{y}^{2}}\\{(y-b)^{2}=4-{x}^{2}}\end{array}\right.$;
∵|$\overrightarrow{OP}$|<1,∴(x-a)2+(y-b)2<1,
∴4-y2+4-x2<1,
∴x2+y2>7;①
又∵(x-a)2+y2=4,
∴y2=4-(x-a)2≤4,
∴y2≤4,
同理x2≤4,
∴x2+y2≤8;②
由①②知7<x2+y2≤8,
∵|$\overrightarrow{OA}$|=$\sqrt{{x}^{2}{+y}^{2}}$,
∴$\sqrt{7}$<|$\overrightarrow{OA}$|≤2$\sqrt{2}$.
故答案为:($\sqrt{7}$,2$\sqrt{2}$]

点评 本题考查了平面向量的应用问题,也考查了不等式的应用问题,根据条件建立坐标系,利用坐标法是解决本题的关键.考查学生的运算和推理能力,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知倾斜角为θ的直线l与直线m:x-2y+3=0垂直,则sin2θ=(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$-\frac{4}{5}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=\sqrt{3}$,$|\overrightarrow a-\overrightarrow b|=1$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,AB是圆O的直径,C,F是圆O上的点,CA平分∠BAF,过C点作圆O的切线交AF的延长线于D点,CM⊥AB,垂足为M.
(1)求证:CD⊥AF;
(2)若CD=$\sqrt{2}$,AM=2,求BM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,点P是圆O直径AB延长线上的一点,PC切圆O于点C,直线PQ平分∠APC,分别交AC、BC于点M、N.求证:
(1)△CMN为等腰三角形;
(2)PB•CM=PC•BN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3,x∈R.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)若$x∈[\frac{π}{3},\frac{4π}{3}]$,求f(x)的最大值和最小值,并指出f(x)取得最值时相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在一次飞机航程中调查男女乘客的晕机情况,男女乘客晕机与不晕机的人数如图所示. 
(1)填写2×2列联表
(2)判断是否有97.5%的把握认为晕机与性别有关?说明你的理由:
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(下面的临界值表供参考)
P(K2≥k)0.400.250.150.100.050.0250.0100.0050.001
k0.7081.3232.0722.7063.8415.0246.6357.87910.828
(1)根据所给的二维条形图得到列联表,
晕机不晕机合计
102030
107080
合计2090100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数y=sin(2x-$\frac{π}{6}$)(a<x<b)的值域是[-1,$\frac{1}{2}$),则b-a的最大值是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a,b,c∈R且a<b,则(  )
A.$\frac{1}{a}$>$\frac{1}{b}$B.a2<b2C.a3<b3D.ac<bc

查看答案和解析>>

同步练习册答案