精英家教网 > 高中数学 > 题目详情

【题目】为了调查某工厂生产的一种产品的尺寸是否合格,现从500件产品中抽出10件进行检验先将500件产品编号为000001002499,在随机数表中任选一个数开始,例如选出第6行第8列的数4开始向右读为了便于说明,下面摘取了随机数表,附表1的第6行至第8,即第一个号码为439,则选出的第4个号码是(

162277943949544354821737932378

844217533157245506887704744767

630163785916955567199810507175

A.548B.443C.379D.217

【答案】D

【解析】

利用随机数法的定义直接求解.

选出第6行第8列的数4开始向右读为了便于说明,下面摘取了随机数表,附表1的第6行至第8

即第一个号码为439,则选出的前4个号码是:439495443217

选出的第4个号码是217

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.

方案一:每满100元减20元;

方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)

红球个数

3

2

1

0

实际付款

7

8

9

原价

1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;

2)若某顾客购物金额为180元,选择哪种方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

2)设点上,点上,求的最小值及此时的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点F为圆C的圆心.

求抛物线的方程与其准线方程;

直线l与圆C相切,交抛物线于AB两点;

若线段AB中点的纵坐标为,求直线l的方程;

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)当时,写出函数的单调区间;(直接写出答案,不必写出证明过程)

(2)当时,求函数的零点;

(3)当时,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,且这六名同学答题正确与否相互之间没有影响.

1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;

2)用表示甲班总得分,求随机变量的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对本工厂工人的理论成绩与实践能力进行分析,决定从本工厂工人中随机抽取一个样本容量为7的样本进行分析.如果随机抽取的7名工人的理论成绩与实践能力值单位:分对应如下表:

工人序号i

1

2

3

4

5

6

7

理论成绩

60

65

70

75

85

87

90

实践能力值

70

77

80

85

90

86

93

1)求这7名工人的理论成绩与实践能力值的中位数、极差;

2)若规定85分以上包括85为优秀,从这7名工人中抽取3名工人,记3名工人中理论成绩和实践能力值均为优秀的人数为X,求X的分布列和期望;

3)根据下表数据,求实践能力值y关于理论成绩x的线性回归方程.系数精确到

附:线性回归方程中,

76

83

812

526

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产了一批高精尖的仪器,为确保仪器的可靠性,工厂安排了一批专家检测仪器的可靠性,毎台仪器被毎位专家评议为“可靠”的概率均为,且每台仪器是否可靠相互独立.

1)当,现抽取4台仪器,安排一位专家进行检测,记检测结果可靠的仪器台数为,求的分布列和数学期望;

2)为进一步提高出厂仪器的可靠性,工厂决定每台仪器都由三位专家进行检测,只有三位专家都检验仪器可靠,则仪器通过检测.若三位专家检测结果都为不可靠,则仪器报废.其余情况,仪器需要回厂返修.拟定每台仪器检测费用为100元,若回厂返修,每台仪器还需要额外花费300元的维修费.现以此方案实施,且抽检仪器为100台,工厂预算3.3万元用于检测和维修,问费用是否有可能会超过预算?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】针对2019双十—”网上购物消费情况,规定:双十一当天购物消费金额不低于600元的网购者为剁手党,低于600元的网购者为理智消费者”.某兴趣小组对双十一当天网购者随机抽取了100名进行抽样分析,得到如下统计图表(单位:人)

女性

男性

总计

剁手党

50

5

55

理智购物者

30

15

45

总计

80

20

100

1)根据以上统计数据回答能否在犯错误的概率不超过0.010的前提下认为剁手党与性别有关?

2)现从抽取的80名女性网购者中按照分层抽样的方法选出8人,然后从选出8人中随机选出3人进行调查,选出的剁手党人数为2时的概率.

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

参考公式:,其中.

查看答案和解析>>

同步练习册答案