精英家教网 > 高中数学 > 题目详情
等差数列数列{an}的公差为2,前n项和为Sn,若a1,a3,a4成等比数列,则S20=(  )
A、180B、220
C、580D、410
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件利用等差数列的通项公式和等比数列性质求出a1=-8,由此能求出S20的值.
解答: 解:∵等差数列数列{an}的公差为2,前n项和为Sn
a1,a3,a4成等比数列,
∴(a1+4)2=a1•(a1+6),
解得a1=-8,
∴S20=20×(-8)+
20×19
2
×2
=220.
故选:B.
点评:本题考查数列的前20项和的求法,是基础题,解题时要注意等差数列和等比数列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax2+x有两个不同的零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列所示的图形中,可以作为函数y=f(x)的图象的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=(a+2b)x+2a-b(a≥0),且当x∈[0,1]时恒有f(x)≤1,则f(-1)的最大值为(  )
A、3B、-3C、6D、-6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=
2
1-i
(i是虚数单位),则z的共轭复数
.
z
=(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=
6
,b=2,B=45°,则角A等于(  )
A、30°B、90°
C、60°D、60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示程序:

若输出y=9,则输入的x值应该是(  )
A、-1B、4或-1
C、4D、2或-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其部分图象如图所示,且直线y=A与曲线y=f(x)(-
π
24
≤x≤
11π
24
)所围成的封闭图形的面积为π,则f(
π
8
)+f(
8
)+f(
8
)+…+f(
2014π
8
)(即
2014
i=1
f(
i•π
8
))的值为(  )
A、0
B、-1-
3
C、-1
D、-1+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且PA⊥底面ABCD,BD⊥PC,E是PA的中点.
(Ⅰ)求证:平面PAC⊥平面EBD;
(Ⅱ)若PA=AB=AC=2,求三棱锥P-EBD的体积.

查看答案和解析>>

同步练习册答案