精英家教网 > 高中数学 > 题目详情
2.在△ABC中,已知cosA=$\frac{2}{3},sinB=\sqrt{5}$cosC,则tanC的值为$\sqrt{5}$.

分析 由已知及同角三角函数基本关系式可求sinA,利用两角和的正弦函数公式,三角形内角和定理化简已知即可求解tanC的值.

解答 解:∵cosA=$\frac{2}{3}$>0,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{5}}{3}$,…(3分)
又∵$\sqrt{5}$cosC=sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{\sqrt{5}}{3}$cosC+$\frac{2}{3}$sinC.
∴整理得:tanC=$\sqrt{5}$.…(6分)
故答案为:$\sqrt{5}$.

点评 本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式,三角形内角和定理的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.为稳定当前物价,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场商品的售价x元和销售量y件之间的一组数据如下表所示:
价格x8.599.51010.5
销售量y1211976
由散点图可知,销售量y与价格x之间有较好的线性相关关系,其线性回归方程是$\widehat{y}$=-3.2x+$\widehat{a}$,则$\hat a$=39.4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式an+1=f(an)得到的数列{an}满足an+1>an,n∈N*,则该函数的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知实数x,y满足$\left\{\begin{array}{l}x+y+3>0\\ x-2y+6>0\\ 3x-y-2<0\end{array}\right.$,则z=x-y的最小值为(  )
A.0B.-1C.-3D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆C:x2+y2=2,则过点(1,1)的圆的切线方程是x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设两条直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,则l1∥l2是m<-4的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C的对边分别为a,b,c,且(a-c)(sinA+sinC)=(a-b)sinB.
(1)求角C的大小;
(2)若c=$\sqrt{3}$≤a,求2a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若复数$z=\frac{a+3i}{1+2i}({a∈R})$为纯虚数,则实数a=(  )
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在3名男教师和3名女教师中选取3人参加义务献血,要求男、女教师都有,则有18种不同的选取方法(用数字作答).

查看答案和解析>>

同步练习册答案