精英家教网 > 高中数学 > 题目详情
7.已知在△ABC中,已知cosA=-$\frac{1}{4}$,a+b=6,a+c=7,求a的值.

分析 利用余弦定理列出关系式,把表示出的b与c,cosA的值代入即可求出a的值.

解答 解:∵在△ABC中,cosA=-$\frac{1}{4}$,a+b=6,a+c=7,即b=6-a,c=7-a,
∴由余弦定理得:a2=b2+c2-2bccosA,即a2=(6-a)2+(7-a)2+$\frac{1}{2}$(6-a)(7-a),
解得:a=4或a=$\frac{53}{3}$(舍去),
则a的值为4.

点评 此题考查了余弦定理,以及一元二次方程的解法,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,侧棱垂直底面的三棱柱ABC-A1B1C1的底面ABC位于平行四边形ACDE中,AE=2,AC=AA1=4,∠E=60°,点B,F分别为DE,BC中点.
(Ⅰ)求证:A1C∥平面AB1F;
(Ⅱ)设二面角A1-BC-A的大小为α,直线AC与平面A1BC所成的角为β,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知两个半径不相等的圆O1与圆O2相加交于M、N,且圆O1、圆O2分别与圆O内切与S,求证:OM⊥MN的充分必要条件是S、N、T三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+ax2+3x的图象过点(1,1).
(Ⅰ)求a的值及f(x)的极值;
(Ⅱ)证明:存在m∈(1,+∞),使得$f(m)=f(\frac{1}{2})$;
(Ⅲ)记y=f(x)的图象为曲线Γ.设点A(x1,y1),B(x2,y2)是曲线Γ上不同的两点.如果在曲线Γ上存在点M(x0,y0),使得:①${x_0}=\frac{{{x_1}+{x_2}}}{2}$;②曲线Γ在点M处切线平行于直线AB,则称函数f(x)存在“中值伴随切线”,试问:函数f(x)是否存在“中值伴随切线”?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其离心率为$\frac{\sqrt{3}}{2}$,两条准线之间的距离为$\frac{8\sqrt{3}}{3}$.B,C分别为椭圆M的上、下顶点,过点T(t,2)(t≠0)的直线TB,TC分别与椭圆M交于E,F两点.
(1)求椭圆M的标准方程;
(2)若△TBC的面积是△TEF的面积的k倍,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合M={0,1,2,3},N={x|x2-3x+2≤0},则M∩N=(  )
A.{0}B.{1}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若数列{an}满足an=$\frac{1}{n!}$,求证:其前n项和Sn<e-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$.

求作(1)$\overrightarrow{a}$-$\overrightarrow{b}$-$\overrightarrow{c}$;
(2)$\overrightarrow{a}$-($\overrightarrow{b}$-$\overrightarrow{c}$);
(3)$\overrightarrow{b}$-$\overrightarrow{a}$+$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)两焦点分别为F1、F2,过F1的直线交椭圆于P、Q两点,若|PF2|=|F1F2|,且2|PF1|=3|QF1|,求椭圆离心率.

查看答案和解析>>

同步练习册答案