分析 (1)根据题意,分析可得b=c=1,计算可得a的值,代入椭圆的方程即可得答案;
(2)根据题意,设直线AB的方程为y=k(x+1),与$\frac{x^2}{2}+{y^2}=1$联立可得(1+2k2)x2+4k2x+2k2-2=0,设A(x1,y1),B(x2,y2),AB的中点为M(x0,y0),由根与系数的关系分析可得直线AB的垂直平分线方程,由弦长公式可以表示|AB|,计算可得答案.
解答 解:(1)根据题意,因为以F1F2为直径的圆与椭圆C有且仅有两个交点,
所以b=c=1,
即a=$\sqrt{{b}^{2}+{c}^{2}}$=$\sqrt{2}$,
即椭圆C的方程为$\frac{x^2}{2}+{y^2}=1$,
(2)根据题意,过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,即直线AB的斜率存在,
设直线AB的方程为y=k(x+1),
与$\frac{x^2}{2}+{y^2}=1$联立,得(1+2k2)x2+4k2x+2k2-2=0,
设A(x1,y1),B(x2,y2),AB的中点为M(x0,y0),
${x_1}+{x_2}=-\frac{{4{k^2}}}{{1+3{k^2}}}$,${x_1}•{x_2}=\frac{{2{k^2}}}{{1+2{k^2}}}$,
${y_1}+{y_2}=k({x_1}+1)+k({x_2}+1)=\frac{2k}{{1+2{k^2}}}$,
即$M(-\frac{{2{k^2}}}{{1+2{k^2}}},\frac{k}{{1+2{k^2}}})$,
设直线AB的垂直平分线方程为$y-\frac{k}{{1+2{k^2}}}=-\frac{1}{k}(x+\frac{{2{k^2}-2}}{{1+2{k^2}}})$,
令y=0,得${x_p}=\frac{{-{k^2}}}{{1+2{k^2}}}$,
因为${x_p}∈(-\frac{1}{4},0)$,所以$0<{k^2}<\frac{1}{2}$$|AB|=\sqrt{(1+{k^2})[{{{({x_1}+{x_2})}^2}-4{x_1}•{x_2}}]}=\sqrt{(1+{k^2})[{{{(-\frac{{4{k^2}}}{{1+2{k^2}}})}^2}-4\frac{{2{k^2}-2}}{{1+2{k^2}}}}]}$
=$\frac{{2\sqrt{2}•(1+{k^2})}}{{1+2{k^2}}}=\sqrt{2}(1+\frac{1}{{1+2{k^2}}})∈(\frac{{3\sqrt{2}}}{2},2\sqrt{2})$;
即线段AB长的范围是($\frac{3\sqrt{2}}{2}$,2$\sqrt{2}$).
点评 本题考查直线与椭圆的位置关系,解题的关键是求出椭圆的标准方程.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 点D不在直线BC上 | B. | 点D在BC的延长线上 | ||
| C. | 点D在线段BC上 | D. | 点D在CB的延长线上 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
第3个月 第4个月 | 租用a型车 | 租用b型车 |
| 租用a型车 | 60% | 50% |
| 租用b型车 | 40% | 50% |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com