精英家教网 > 高中数学 > 题目详情
11.已知△ABC中,$AB=1,BC=\sqrt{3},BD$是AC边上的中线.
(1)求$\frac{sin∠ABD}{sin∠CBD}$; 
(2)若$∠A=\frac{2π}{3}$,求BD的长.

分析 (1)利用△ABD的面积与△CBD的面积相等,即$\frac{1}{2}•AB•BD•sin∠ABD=\frac{1}{2}•BC•BD•sin∠CBD$,即可求$\frac{sin∠ABD}{sin∠CBD}$;
(2)利用余弦定理,AB2+AC2-2•AB•AC•cos∠A=BC2,解得AC=1,又因为D是AC的中点,所以$AD=\frac{1}{2}$,即可求出BD的长.

解答 解:(1)因为BD是AC边上的中线,所以△ABD的面积与△CBD的面积相等,
即$\frac{1}{2}•AB•BD•sin∠ABD=\frac{1}{2}•BC•BD•sin∠CBD$,
所以$\frac{sin∠ABD}{sin∠CBD}=\frac{BC}{AB}=\sqrt{3}$.                                                      …(6分)
(2)在△ABC中,因为AB=1,$BC=\sqrt{3}$,
利用余弦定理,AB2+AC2-2•AB•AC•cos∠A=BC2,解得AC=-2(舍)或AC=1,
又因为D是AC的中点,所以$AD=\frac{1}{2}$,
在△ABD中,BD2=AB2+AD2-2•AB•AD•cos∠A,
所以$BD=\frac{{\sqrt{7}}}{2}$.                                                               …(12分)

点评 本题考查余弦定理,考查三角形面积的计算,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+{y^2}=1\;(a>0)$,F1,F2分别是其左、右焦点,以F1F2为直径的圆与椭圆C有且仅有两个交点.
(1)求椭圆C的方程;
(2)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点P,点P横坐标的取值范围是$(-\frac{1}{4},0)$,求线段AB长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$f(x)={e^x}-\frac{x}{4}$,其中e为自然对数的底数
(1)设g(x)=xf'(x)(其中f'(x)为f(x)的导函数),判断g(x)在(0,+∞)上的单调性
(2)若F(x)=lnx-af(x)+1无零点,试确定a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点A(-3,0),B(0,2)在椭圆$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$上,则椭圆的标准方程为(  )
A.$\frac{x^2}{3}+\frac{y^2}{2}=1$B.$\frac{x^2}{9}+\frac{y^2}{4}=1$C.$\frac{x^2}{3}+{y^2}=1$D.$\frac{x^2}{5}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}是等比数列,若${a_2}=1,{a_5}=\frac{1}{8}$,则${a_1}{a_2}+{a_2}{a_3}+…+{a_n}{a_{n+1}}({n∈{N^*}})$的取值范围是(  )
A.$({\frac{2}{3},2}]$B.$[{1,\frac{8}{3}})$C.$[{2,\frac{8}{3}})$D.$({-∞,\frac{8}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设实数x,y满足不等式组$\left\{\begin{array}{l}{y≥2x}\\{y-x≤1}\\{y≥1}\end{array}\right.$,则目标函数z=2x+y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在长为5的线段AB上任取一点P,以AP为边长作等边三角形,则此三角形的面积介于$\sqrt{3}$和4$\sqrt{3}$的概率为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若数列{an}满足an+1=1-$\frac{1}{{a}_{n}}$,且a1=2,则a2016=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.甲、乙两人约定晚上6点到7点之间在某地见面,并约定先到者要等候另一人10分钟,过时即可离开.则甲、乙能见面的概率为$\frac{11}{36}$.

查看答案和解析>>

同步练习册答案