精英家教网 > 高中数学 > 题目详情
3.在长为5的线段AB上任取一点P,以AP为边长作等边三角形,则此三角形的面积介于$\sqrt{3}$和4$\sqrt{3}$的概率为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

分析 设AP=x,表示出正三角形面积为$\frac{\sqrt{3}}{4}{x}^{2}$,由$\sqrt{3}$<$\frac{\sqrt{3}}{4}{x}^{2}$<4$\sqrt{3}$,解得x范围,利用长度长度比求几何概型概率.

解答 解:设AP=x,则正三角形面积为$\frac{\sqrt{3}}{4}{x}^{2}$,
若$\sqrt{3}$<$\frac{\sqrt{3}}{4}{x}^{2}$<4$\sqrt{3}$,解得2<x<4,由几何概型易得知$\frac{4-2}{5}=\frac{2}{5}$,
故选C.

点评 本题考查了几何概型的概率求法;首先明确几何测度,利用线段长度比求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a,b两种“共享单车”(以下简称a型车,b型车).某学习小组7名同学调查了该地区共享单车的使用情况.
(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a型车,3人租到b型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a型车的概率;
(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a型车的用户中,在第4个月有60%的用户仍租a型车.

第3个月
第4个月
租用a型车租用b型车
租用a型车60%50%
租用b型车40%50%
若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a,b两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足$\left\{\begin{array}{l}x+y≤2\\ x-y≤2\\ 0≤x≤1\end{array}\right.$则z=2x+4y的最大值是(  )
A.-4B.2C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC中,$AB=1,BC=\sqrt{3},BD$是AC边上的中线.
(1)求$\frac{sin∠ABD}{sin∠CBD}$; 
(2)若$∠A=\frac{2π}{3}$,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P(x0,$\frac{5}{2}$)为双曲线上一点,若△PF1F2的内切圆半径为1,且圆心G到原点O的距离为$\sqrt{5}$,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{8{y}^{2}}{25}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$-$\frac{2{y}^{2}}{25}$=1D.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{50}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(1,$\frac{\sqrt{3}}{2}$),且离心率为$\frac{\sqrt{3}}{2}$
(1)求椭圆的标准方程;
(2)已知点P(4,0),椭圆内部是否存在一个定点,过此点的直线交椭圆于M,N两点,且$\overrightarrow{PM}$•$\overrightarrow{PN}$=12恒成立,若存在,求出此点,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线C1的极坐标方程为ρ($\sqrt{2}$cosθ-sinθ)=a,曲线C2的参数方程为$\left\{\begin{array}{l}x=sinθ+cosθ\\ y=1+sin2θ\end{array}$(θ为参数),且C1与C2有两个不同的交点.
(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;
(2)求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过点P(-2,0)的双曲线C与椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的焦点相同,则双曲线C的渐近线方程是(  )
A.$y=±\frac{{\sqrt{3}}}{3}x$B.$y=±\sqrt{3}x$C.$y=±\frac{1}{2}x$D.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.当实数m分别取什么值时,复数z=(m2+5m+6)+(m2-2m-15)i不是纯虚数(  )
A.m≠5B.m≠3C.m≠-2D.m≠-3

查看答案和解析>>

同步练习册答案