精英家教网 > 高中数学 > 题目详情
10.已知各项均为正数的数列{an},其前n项和为Sn.点(an,Sn)在函数f(x)=2x-1图象上.数列{bn}满足:bn=log2an+1
(1)求数列{an}、{bn}的通项公式;
(2)若cn=$\frac{{b}_{n}}{{a}_{n}}$,数列{cn}的前n项和Tn,求证:Tn+$\frac{n}{{2}^{n-1}}$≥2恒成立.

分析 (1)利用数列递推关系与对数的运算性质即可得出.
(2)利用“错位相减法”、等比数列的求和公式与数列的单调性即可得出.

解答 (1)解:∵点(an,Sn)在函数f(x)=2x-1图象上,∴Sn=2an-1.
当n=1时,a1=1.
当n≥2时,an=Sn-Sn-1=2an-1-(2an-1-1).化为an=2an-1
∴an=2n-1
∴bn=log2an+1=n.
(2)证明:cn=$\frac{{b}_{n}}{{a}_{n}}$=$\frac{n}{{2}^{n-1}}$,
∴数列{cn}的前n项和Tn=1+$\frac{2}{2}$+$\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}}$,
$\frac{1}{2}$Tn=$\frac{1}{2}+\frac{2}{{2}^{2}}$+…+$\frac{n-1}{{2}^{n-1}}$+$\frac{n}{{2}^{n}}$,
相减可得:$\frac{1}{2}$Tn=1+$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$=$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n}}$,
∴Tn=4-$\frac{n+2}{{2}^{n-1}}$,
∴Tn+$\frac{n}{{2}^{n-1}}$=4-$\frac{2}{{2}^{n-1}}$≥4-2=2.
∴Tn+$\frac{n}{{2}^{n-1}}$≥2恒成立.

点评 本题考查了“错位相减法”、等比数列的求和公式、数列的单调性、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ为参数),以O为极点,x轴的非负半轴为极轴且取相同的单位长度建立极坐标系.
(1)求圆C的极坐标方程;
(2)若直线l的极坐标方程是$2ρsin({θ+\frac{π}{3}})=3\sqrt{3}$,射线$OM:θ=\frac{π}{3}$与圆C的交点为O、P,与直线l的交点为Q.求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+{y^2}=1\;(a>0)$,F1,F2分别是其左、右焦点,以F1F2为直径的圆与椭圆C有且仅有两个交点.
(1)求椭圆C的方程;
(2)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点P,点P横坐标的取值范围是$(-\frac{1}{4},0)$,求线段AB长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.我国南北朝时代的数学家祖暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底长为1、下底长为2的梯形,且当实数t取[0,3]上的任意值时,直线y=t被图1和图2所截得的两线段长总相等,则图1的面积为(  )
A.4B.$\frac{9}{2}$C.5D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$=(2+sin x,1),$\overrightarrow{b}$=(2,-2),$\overrightarrow{c}$=(sin x-3,1),$\overrightarrow{d}$=(1,k)(x∈R,k∈R).
(1)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$],且$\overrightarrow{a}$∥($\overrightarrow{b}$+$\overrightarrow{c}$),求x的值;
(2)若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.两曲线$y=\sqrt{x}$,y=x2在x∈[0,1]内围成的图形面积是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$f(x)={e^x}-\frac{x}{4}$,其中e为自然对数的底数
(1)设g(x)=xf'(x)(其中f'(x)为f(x)的导函数),判断g(x)在(0,+∞)上的单调性
(2)若F(x)=lnx-af(x)+1无零点,试确定a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点A(-3,0),B(0,2)在椭圆$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$上,则椭圆的标准方程为(  )
A.$\frac{x^2}{3}+\frac{y^2}{2}=1$B.$\frac{x^2}{9}+\frac{y^2}{4}=1$C.$\frac{x^2}{3}+{y^2}=1$D.$\frac{x^2}{5}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若数列{an}满足an+1=1-$\frac{1}{{a}_{n}}$,且a1=2,则a2016=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-1D.1

查看答案和解析>>

同步练习册答案