精英家教网 > 高中数学 > 题目详情
5.已知$\overrightarrow{a}$=(2+sin x,1),$\overrightarrow{b}$=(2,-2),$\overrightarrow{c}$=(sin x-3,1),$\overrightarrow{d}$=(1,k)(x∈R,k∈R).
(1)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$],且$\overrightarrow{a}$∥($\overrightarrow{b}$+$\overrightarrow{c}$),求x的值;
(2)若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,求f(x)的最小值.

分析 (1)首先利用坐标表示($\overrightarrow{b}$+$\overrightarrow{c}$),然后根据向量平行求得sinx的值,根据角的范围求x;
(2)由数量积公式得到f(x)的表达式,根据正弦函数的有界性求最小值.

解答 解:(1)∵$\overrightarrow{b}$+$\overrightarrow{c}$=(sin x-1,-1),又$\overrightarrow{a}$∥($\overrightarrow{b}$+$\overrightarrow{c}$),
∴-(2+sin x)=sin x-1,即sin x=-$\frac{1}{2}$.
又x∈[-$\frac{π}{2}$,$\frac{π}{2}$],∴x=-$\frac{π}{6}$.
(2)∵$\overrightarrow{a}$=(2+sin x,1),$\overrightarrow{b}$=(2,-2),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=2(2+sin x)-2=2sin x+2.
又x∈R,
∴当sin x=-1时,f(x)有最小值,且最小值为0.

点评 本题考查了平面向量的加法、向量平行以及数量积的坐标运算;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a0+a2+a4=121.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等比数列{an}中各项均为正数,Sn是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=(  )
A.9B.15C.18D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某地区以“绿色出行”为宗旨开展“共享单车”业务.该地有a,b两种“共享单车”(以下简称a型车,b型车).某学习小组7名同学调查了该地区共享单车的使用情况.
(Ⅰ)某日该学习小组进行一次市场体验,其中4人租到a型车,3人租到b型车.如果从组内随机抽取2人,求抽取的2人中至少有一人在市场体验过程中租到a型车的概率;
(Ⅱ)根据已公布的2016年该地区全年市场调查报告,小组同学发现3月,4月的用户租车情况城现如表使用规律.例如,第3个月租a型车的用户中,在第4个月有60%的用户仍租a型车.

第3个月
第4个月
租用a型车租用b型车
租用a型车60%50%
租用b型车40%50%
若认为2017年该地区租用单车情况与2016年大致相同.已知2017年3月该地区租用a,b两种车型的用户比例为1:1,根据表格提供的信息,估计2017年4月该地区租用两种车型的用户比例.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}中,已知a1=1,a2=a,an+1=k(an+an+2)对任意n∈N*都成立,数列{an}的前n项和为Sn.(这里a,k均为实数)
(1)若{an}是等差数列,求Sn
(2)若a=1,k=-$\frac{1}{2}$,求Sn
(3)是否存在实数k,使数列{an}是公比不为1的等比数列,且任意相邻三项am,am+1,am+2按某顺序排列后成等差数列?若存在,求出所有k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知各项均为正数的数列{an},其前n项和为Sn.点(an,Sn)在函数f(x)=2x-1图象上.数列{bn}满足:bn=log2an+1
(1)求数列{an}、{bn}的通项公式;
(2)若cn=$\frac{{b}_{n}}{{a}_{n}}$,数列{cn}的前n项和Tn,求证:Tn+$\frac{n}{{2}^{n-1}}$≥2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.
(1)根据茎叶图中的数据完成2×2列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?
购买意愿强购买意愿弱合计
20-40岁
大于40岁
合计
(2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为X,求X的分布列和数学期望.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足$\left\{\begin{array}{l}x+y≤2\\ x-y≤2\\ 0≤x≤1\end{array}\right.$则z=2x+4y的最大值是(  )
A.-4B.2C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线C1的极坐标方程为ρ($\sqrt{2}$cosθ-sinθ)=a,曲线C2的参数方程为$\left\{\begin{array}{l}x=sinθ+cosθ\\ y=1+sin2θ\end{array}$(θ为参数),且C1与C2有两个不同的交点.
(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;
(2)求实数a的取值范围.

查看答案和解析>>

同步练习册答案