精英家教网 > 高中数学 > 题目详情
10.复数$\frac{2-i}{1+{i}^{5}}$在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数$\frac{2-i}{1+{i}^{5}}$=$\frac{2-i}{1+i}$=$\frac{(2-i)(1-i)}{(1+i)(1-i)}$=$\frac{1-3i}{2}$=$\frac{1}{2}$-$\frac{3}{2}i$,在复平面内所对应的点$(\frac{1}{2},-\frac{3}{2})$位于第四象限,
故选:D.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.△ABC的内角A、B、C对的边分别为a、b、c,$\overrightarrow{m}$=(sinB,5sinA+5sinc)与$\overrightarrow{n}$=(5sinB-6sinC,sinC-sinA)垂直.(1)求sinA的值;
(2)若a=2$\sqrt{2}$,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的方程$\frac{1}{||x-1|-1|}$=|sin$\frac{1}{2}$πx|在[-6,6]上解的个数是11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.与向量$\overrightarrow{a}$=(6,8)共线的单位向量是(  )
A.(-$\frac{3}{5}$,-$\frac{4}{5}$)B.(0,1)C.(3,4)D.($\frac{4}{5}$,$\frac{3}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=lnx+\frac{2a}{x+1}$,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)如果当x>0,且x≠1时,$\frac{lnx}{x-1}>\frac{a}{x+1}$恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|log2x<2},B={y|y=3x+2,x∈R},则A∩B=(  )
A.(1,4)B.(2,4)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图为某小区100为居民2015年月平均用水量(单位:t)的频率分布直方图的一部分,据此可求这100位居民月平均用水量的中位数为2.02吨.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题p:?x∈N,x3<x2;命题q:?a∈(0,1)∪(1,+∞),函数f(x)=loga(x-1)的图象过点(2,0),则下列命题是真命题的是(  )
A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的首项a1=1,公差d>0,且a52=a2a14
(1)求数列{an}的前n项和Sn
(2)若数列{bn}的满足b1+2b2+3b3+…+nbn-n=$\frac{{S}_{n}}{2}$,求数列{bn}的通项公式.

查看答案和解析>>

同步练习册答案