精英家教网 > 高中数学 > 题目详情
19.命题p:?x∈N,x3<x2;命题q:?a∈(0,1)∪(1,+∞),函数f(x)=loga(x-1)的图象过点(2,0),则下列命题是真命题的是(  )
A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q

分析 分别判断出p,q的真假,从而判断出复合命题的真假.

解答 解:命题p:?x∈N,x3<x2,是假命题;
命题q:?a∈(0,1)∪(1,+∞),
令x-1=1,解得:x=2,此时f(2)=0,
故函数f(x)=loga(x-1)的图象过点(2,0),是真命题;
故?p∧q真是真命题;
故选:C.

点评 本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知cosx=$\frac{1}{3}$,-π<x<0,则角x的值为-arccos$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$\frac{2-i}{1+{i}^{5}}$在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知首项不为0的等差数列{an}中,前n项和为Sn,满足a4=2a2,且S1,S2,S4-1成等比数列.
(Ⅰ)求an和Sn
(Ⅱ)记${b_n}=\frac{1}{S_n}$,数列{bn}的前项和Tn.若3m-8≤Tn<2m-1对任意n∈N*恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sinωxcosωx+2$\sqrt{3}$sin2ωx-$\sqrt{3}$(ω>0)的最小正周期为π.
(1)求函数f(x)的单调增区间;
(2)f(x)的图象是由y=sinx的图象通过怎样平移而得到的;
(3)将函数f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,Sn=$\frac{1}{3}$(an-1)(n∈N*).
(1)求a1,a2,a3的值;
(2)求an的通项公式及S10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.平面凸四边形ABCD,AB=2,BC=3,CD=4,AD=5,则此四边形的最大面积为$2\sqrt{30}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x+2},x≤0}\\{lnx,x>0}\end{array}\right.$,则f(f(-3)=)-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A为△ABC的最小内角,若向量$\overrightarrow{a}$=(cos2A,sin2A),$\overrightarrow{b}$=($\frac{1}{co{s}^{2}A+1}$,$\frac{1}{si{n}^{2}A-2}$),则$\overrightarrow{a}$$•\overrightarrow{b}$的取值范围是(  )
A.(-∞,$\frac{1}{2}$)B.(-1,$\frac{1}{2}$)C.[-$\frac{2}{5}$,$\frac{1}{2}$)D.[-$\frac{2}{5}$,+∞)

查看答案和解析>>

同步练习册答案