分析 (Ⅰ)利用等差数列的关系求得公差d,再求的通项公式an和前n项公式Sn,(Ⅱ)写出bn写出的通项公式,利用裂项法求得前n项公式Sn,再利用函数的单调性,建立方程组,求得m的取值范围.
解答 (Ⅰ)设公差为d,
则$\left\{\begin{array}{l}{a_4}=2{a_2}\\{S_1}•({S_4}-1)=S_2^2\end{array}\right.$即$\left\{\begin{array}{l}{a_1}+3d=2({a_1}+d),\;\;\;\;\;\;\;①\\{a_1}•(4{a_1}+6d-1)={(2{a_1}+d)^2},\;\;②\end{array}\right.$(1分)
由①得a1=d,代入②式得${a_1}•(10{a_1}-1)=9a_1^2$,
由a1≠0,得10a1-1=9a1,所以a1=d=1,(3分)
所以an=n,则${S_n}=\frac{1+n}{2}×n=\frac{1}{2}n(n+1)$.(4分)
(Ⅱ)可得${b_n}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$,(6分)
所以${T_n}=2(\frac{1}{1}-\frac{1}{2})+2(\frac{1}{2}-\frac{1}{3})+2(\frac{1}{3}-\frac{1}{4})+…+2(\frac{1}{n}-\frac{1}{n+1})=2(1-\frac{1}{n+1})$,(8分)
由于$2(1-\frac{1}{n+1})$为随n的增大而增大,可得,(10分)
∵3m-8≤Tn<2m-1恒成立,
∴$\left\{\begin{array}{l}{3m-8≤1}\\{2m-1≥2}\end{array}\right.$解$\frac{3}{2}≤m≤3$.
所以实数m的取值范围是$[\frac{3}{2},3]$.(12分)
点评 本题考查求等差数列的前n项和即通项公式,以及列项法求前n项和的方法,再求m的取值范围,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [9,+∞) | B. | [-$\frac{1}{3}$,+∞) | C. | [-$\frac{5}{3}$,+∞) | D. | [-$\frac{1}{3}$,9] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{3}{5}$,-$\frac{4}{5}$) | B. | (0,1) | C. | (3,4) | D. | ($\frac{4}{5}$,$\frac{3}{5}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,4) | B. | (2,4) | C. | (1,2) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | p∧¬q | C. | ¬p∧q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com