精英家教网 > 高中数学 > 题目详情
7.在正三棱锥S-ABC中,异面直线SA与BC所成角的大小为(  )
A.30°B.60°C.90°D.120°

分析 取BC中点O,连结AO、SO,推导出BC⊥平面SOA,从而得到异面直线SA与BC所成角的大小为90°.

解答 解:取BC中点O,连结AO、SO
∵在正三棱锥S-ABC中,SB=SC,AB=AC,
∴SO⊥BC,AO⊥BC,
∵SO∩AO=O,∴BC⊥平面SOA,
∵SA?平面SAO,
∴BC⊥SA,
∴异面直线SA与BC所成角的大小为90°.
故选:C.

点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知P为△ABC所在平面上的一点,且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+2y$\overrightarrow{AC}$,其中x,y∈R为实数,设点M(x,y),点N(1,1),当点P落在△ABC的内部,|MN|的取值范围是($\frac{2\sqrt{5}}{5}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{n}^{2}+1}$(n∈N*),则a2等于(  )
A.1+$\frac{1}{2}$B.$\frac{1}{5}$C.1$+\frac{1}{2}$$+\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$D.非以上答案

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列定积分:
(1)${∫}_{1}^{2}$(ex-$\frac{1}{x}$)dx;
(2)${∫}_{0}^{\frac{π}{2}}$(cos$\frac{x}{2}$-sin$\frac{x}{2}$)2dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)的图象关于原点对称,且当x∈(-∞,0)时,f(x)-xf′(x)>0(其中f′(x)是f(x)的导函数),a=$\frac{{\sqrt{2}}}{2}f({0.5^{-0.5}}),b=({log_3}π)f({log_π}3)$,$c=({log_9}\frac{1}{3})f({log_{\frac{1}{3}}}9)$,则下列关系式正确的是(  )
A.c>a>bB.b>a>cC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}满足:a1=2,且对任意n,m∈N*,都有am+n=am•an,Sn是数列{an}的前n项和,则$\frac{S_4}{S_2}$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}前n项和为Sn,若Sn=2an-2n,则Sn=n•2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设公差不为0的等差数列{an}的首项a1=1,前n项和为Sn,且$\frac{1}{{a}_{1}}$,$\frac{1}{{a}_{2}}$,$\frac{1}{{a}_{4}}$成等比数列.
(1)求数列{an}的通项公式及Sn
(2)设bn=$\frac{1}{{S}_{n}}$,tn=$\frac{1}{{a}_{{2}^{n-1}}}$,且Bn,Tn分别为数列{bn},{tn}的前n项和,比较Bn与Tn+$\frac{1}{{2}^{n-1}}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.关于x的方程x2+4|x|+$\frac{2}{{{x^2}+4|x|}}$=3的最大实数根是$\sqrt{6}$-2.

查看答案和解析>>

同步练习册答案