分析 若函数f(x)=$\left\{\begin{array}{l}{(5-a)x-3,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$为R上的增函数,则$\left\{\begin{array}{l}5-a>0\\ a>1\\ 5-a-3≤0\end{array}\right.$,解得实数a的取值范围.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(5-a)x-3,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$为R上的增函数,
∴$\left\{\begin{array}{l}5-a>0\\ a>1\\ 5-a-3≤0\end{array}\right.$,
解得a∈[2,5),
故答案为:[2,5)
点评 本题考查的知识点是分段函数的应用,函数的单调性,正确理解分段函数单调的含义,是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 3 | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | 3 | C. | $\sqrt{7}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2$\sqrt{2}$] | B. | [2$\sqrt{2}$,3] | C. | [-2$\sqrt{2}$,3] | D. | λ=3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com