精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=cos(2x-\frac{π}{6})$.
(1)求函数的最小正周期;
(2)求函数的单调减区间.

分析 由条件利用余弦函数的周期性和单调性,得出结论.

解答 解:(1)对于函数$f(x)=cos(2x-\frac{π}{6})$,它的周期为$T=\frac{2π}{|ω|}=\frac{2π}{2}=π$.
(2)令2kπ≤2x-$\frac{π}{6}$≤2kπ+π,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,
可得函数的减区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

点评 本题主要考查余弦函数的周期性和单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若480°角的终边上有一点(a,4),则a的值是(  )
A.$\frac{4\sqrt{3}}{3}$B.$-\frac{4\sqrt{3}}{3}$C.4$\sqrt{3}$D.$-4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图在长方形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,N$是CD的中点,M是线段AB上的点,$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$.
(1)若M是AB的中点,求证:$\overrightarrow{AN}$与$\overrightarrow{CM}$共线;
(2)在线段AB上是否存在点M,使得$\overrightarrow{BD}$与$\overrightarrow{CM}$垂直?若不存在请说明理由,若存在请求出M点的位置;
(3)若动点P在长方形ABCD上运动,试求$\overrightarrow{AP}•\overrightarrow{AB}$的最大值及取得最大值时P点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.求值:log23•log57•log35•log74=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设t=2x+y,其中x,y满足$\left\{\begin{array}{l}x+y-2≥0\\ x-2y+4≥0\\ 2x-y-4≤0\end{array}\right.$,则t的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某市期末教学质量检测,甲、乙、丙三科考试成绩近似服从正态分布,则由如图曲线可得下列说法中错误的是(  )
A.甲、乙、丙的总体的均值都相同B.甲学科总体的方差最小
C.乙学科总体的方差及均值都居中D.丙学科总体的方差最大

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,已知a4+a7=16,则该数列前11项和S11=(  )
A.58B.88C.143D.176

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,四边形ABCD与ABEF均为矩形,BC=BE=2AB,二面角E-AB-C的大小为$\frac{π}{3}$.现将△ACD绕着AC旋转一周,则在旋转过程中,(  )
A.不存在某个位置,使得直线AD与BE所成的角为$\frac{π}{4}$
B.存在某个位置,使得直线AD与BE所成的角为$\frac{π}{2}$
C.不存在某个位置,使得直线AD与平面ABEF所成的角为$\frac{π}{4}$
D.存在某个位置,使得直线AD与平面ABEF所成的角为$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数y=f(x)在区间[0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算出曲线y=f(x)及直线x=0,x-1=0,y=0所围成部分的面积S.先产生两组(每组100个)区间[0,1]上的均匀随机数x1,x2,x3,…x100和y1,y2,y3,…,y100,由此得到100个点(xi,yi)(i=1,2,3,…100),若发现其中满足yi>f(xi)(i=1,2,3,…100)的点有32个,那么由随机方法可以得到S的近似值为$\frac{8}{25}$.

查看答案和解析>>

同步练习册答案