精英家教网 > 高中数学 > 题目详情
20.在直角三角形ABC中,D是斜边BC上的一点,AB=BD.
(Ⅰ)若AC=3,CD=1,求AD长;
(Ⅱ)若AC=$\sqrt{3}$DC,求角B的值.

分析 (I)设AB=x,利用勾股定理列方程解出x,得出三角形的三边长,得出cosB,在△ACD中利用余弦定理计算AD;
(II)AC=AB+$\frac{\sqrt{3}}{3}AC$,利用勾股定理列方程得出AB,AC的关系,从而求出tanB.

解答 解:(I)在直角三角形ABC中,设AB=BD=x,则BC=x+1,
由勾股定理得x2+9=(x+1)2,解得x=4.
∴AB=4,BC=5,
∴cosC=$\frac{AC}{BC}=\frac{3}{5}$.
在△ACD中,由余弦定理得AD2=AC2+CD2-2AC•CDcosC=9+1-$\frac{18}{5}$=$\frac{32}{5}$.
∴AD=$\sqrt{\frac{32}{5}}$=$\frac{4\sqrt{10}}{5}$.
(II)∵AC=$\sqrt{3}$CD,∴CD=$\frac{\sqrt{3}}{3}AC$,
∵AB=BD,∴BC=AB+$\frac{\sqrt{3}}{3}AC$.
由勾股定理得AB2+AC2=BC2,即AB2+AC2=(AB+$\frac{\sqrt{3}}{3}$AC)2
整理得AC=$\sqrt{3}$AB.
∴tanB=$\frac{AC}{AB}=\sqrt{3}$.
∴B=$\frac{π}{3}$.

点评 本题考查了勾股定理,余弦定理,特殊角的三角函数值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若角θ满足sinθ<0且cosθ>0,则角θ在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设等差数列{an}的公差为d,若数列{2${\;}^{{a}_{1}{a}_{n}}$}为递减数列,则a1d<0(填“>”或“<”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(cosx-sinx,$\sqrt{3}$sinx),$\overrightarrow{n}$=(cosx+sinx,2cosx).
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=1,b=1,△ABC的面积为$\sqrt{3}$,求△ABC的外接圆半径R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在锐角三角形△ABC中,已知a=6,c=2$\sqrt{3}$,△ABC的面积为3$\sqrt{3}$,则∠B=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等差数列{an}的公差为1,若Sn≥S8对一切n∈N*恒成立,则首项叫a1的取值范围是(-8,-7).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从装有6个白球、4个黑球和2个黄球的箱子中随机地取出2个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢,以X表示赢得的钱数,随机变量X可以取哪些值?求X的概率分布.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点O为坐标原点,向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-2,1),若点C与点A关于直线y=x对称,则$\overrightarrow{CA}$$•\overrightarrow{BO}$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m,1),若$\overrightarrow{a}$和$\overrightarrow{b}$的夹角为锐角,则m的取值范围为{m|m>-2且m≠$\frac{1}{2}$}.

查看答案和解析>>

同步练习册答案