精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,其中向量$\overrightarrow{m}$=(cosx-sinx,$\sqrt{3}$sinx),$\overrightarrow{n}$=(cosx+sinx,2cosx).
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=1,b=1,△ABC的面积为$\sqrt{3}$,求△ABC的外接圆半径R.

分析 (1)由向量数量积的坐标表示,f(x)=2sin(2x+$\frac{π}{6}$),由正弦函数的性质,求出函数f(x)的单调递增区间;
(2)f(A)=1,2sin(2A+$\frac{π}{6}$)=1,求得A=$\frac{π}{3}$,由三角形的面积公式$S=\frac{1}{2}bcsinA$,求得c=4,由余弦定理求得a的值,由△ABC的外接圆半径R=$\frac{a}{sinA}$可求得R.

解答 解:(1)函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=(cosx-sinx)•(cosx+sinx)+$\sqrt{3}$sinx•2cosx,
=cos2x+$\sqrt{3}$sin2x,
=2sin(2x+$\frac{π}{6}$),
f(x)的单调递增区间2x+$\frac{π}{6}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$]k∈Z,
x∈[kπ-$\frac{π}{6}$,kπ+$\frac{π}{6}$]k∈Z,
f(x)的单调递增区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{6}$]k∈Z.
(2)f(A)=1,2sin(2A+$\frac{π}{6}$)=1,
∴2A+$\frac{π}{6}$=$\frac{5π}{6}$,
A=$\frac{π}{3}$,
∴$S=\frac{1}{2}bcsinA$,c=4,
由余弦定理:a2=b2+c2-2bccosA=$\sqrt{5}$,
由△ABC的外接圆半径R=$\frac{a}{sinA}$=$\frac{\sqrt{5}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{15}}{3}$.
∴△ABC的外接圆半径R=$\frac{2\sqrt{15}}{3}$.

点评 本题考查三角恒等变换、三角函数性质及余弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.直线y=$\sqrt{3}$x+1与直线$\sqrt{3}$x-3y+1=0的夹角是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x||x-2|<3,x∈R},B={x|x2+(1-a)x-a<0,x∈R},若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列命题:
①若α+β=$\frac{7π}{4}$,则(1-tanα)•(1-tanβ)=2;
②已知$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(2,λ),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则实数λ的取值范围是λ<1;
③已知O平面上一定点,A,B,C是平面上不共线的三个点,动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$λ(\overrightarrow{AB}+\overrightarrow{AC})$,λ∈(0,+∞),则P的轨迹一定通过△ABC的重心;
④在△ABC所在的平面上有一点P,满足$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{AB}$,则△PBC与△ABC的面积之比是$\frac{1}{2}$.
其中真命题的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知(x+2y)n的展开式中第二项的系数为8,则(1+x)+(1+x)2+…(1+x)n展开式中所有项的系数和为30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,若a=$3\sqrt{2}$,cosC=$\frac{1}{3}$,S△ABC-=4$\sqrt{2}$,则b等于(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.4$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角三角形ABC中,D是斜边BC上的一点,AB=BD.
(Ⅰ)若AC=3,CD=1,求AD长;
(Ⅱ)若AC=$\sqrt{3}$DC,求角B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanα=-$\frac{1}{3}$,α∈($\frac{3π}{2}$,2π),求sin2α,cos2α,tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解不等式ax2-(a+1)x+1<0.

查看答案和解析>>

同步练习册答案