分析 (1)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.
解答 解:(1)∵$f'(x)=-2x+\frac{2}{x}=-\frac{2(x+1)(x-1)}{x}$
∴f'(1)=0,所求的切线斜率为0,又切点为(1,-1)
故所求切线方程为y=-1…(5分)
(2)∵$f'(x)=-\frac{2(x+1)(x-1)}{x}$且x>0
令f'(x)>0得0<x<1,令f'(x)<0得x>1.
从而函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞)
显然函数只有极大值,且极大值为f(1)=-1…(12分)
点评 本题考查了函数的单调性、极值问题,考查导数的应用以及切线方程问题,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | 3件都是正品 | B. | 至少有1件次品 | C. | 3件都是次品 | D. | 至少有1件正品 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -4 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {1,2} | C. | {2,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3或27 | B. | 3 | C. | 27 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3+\sqrt{3}}}{2}$ | B. | $3+\sqrt{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com