精英家教网 > 高中数学 > 题目详情
20.已知双曲线$\frac{x^2}{36}-\frac{y^2}{64}=1$上一点P到双曲线的一个焦点距离为15,则点P到另外一个焦点的距离为(  )
A.3或27B.3C.27D.5

分析 求出双曲线的a,b,c,设|PF1|=15,运用双曲线的定义,求得|PF2|=3或27,讨论P在左支和右支上,求出最小值,即可判断P的位置,进而得到所求距离.

解答 解:双曲线$\frac{x^2}{36}-\frac{y^2}{64}=1$的a=6,b=8,c=10,
设左右焦点为F1,F2
则有双曲线的定义,得||PF1|-|PF2||=2a=12,
可设|PF1|=15,则有|PF2|=3或27,
若P在右支上,则有|PF2|≥c-a=4,
若P在左支上,则|PF2|≥c+a=16,
故|PF2|=3舍去;.
故选:C.

点评 本题考查双曲线的方程和定义,考查分类讨论的思想方法,考查运算能力,属于基础题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设锐角△ABC的三个内角为A,B,C,其中角B的大小为$\frac{π}{6}$,则cosA+sinC的取值范围为($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2lnx-x2
(1)求函数f(x)在x=1处的切线方程;
(2)求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于(  )
A.10cm3B.20cm3C.30cm3D.40cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如表提供了某厂节能降耗技术改造后在生产A产品过程中纪录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:
x3456
y2.5n44.5
根据上表提供的数据,求得y关于x的线性回归方程为$\widehat{y}$=0.7x+0.35,那么表中n的值为(  )注($\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$)
A.3B.3.15C.3.5D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$C:\frac{x^2}{16}+\frac{y^2}{7}=1$,F为椭圆的右焦点,B为椭圆的上顶点,P是椭圆上一动点.
(1)求|OP|2+|PF|2的取值范围
(2)已知直线l:x+y=1,点P到直线l的距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆E:x2+(y-$\frac{1}{2}$)2=$\frac{9}{4}$,经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点F1,F2,且与椭圆C在第一象限的交点为A,且F1,E,A三点共线,直线l交椭圆C于M,N两点,且与直线OA平行.
(1)求椭圆C的方程;
(2)求三角形AMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500).
(1)求居民收入在[3000,3500)的频率;
(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;
(3)为了分析居民的收入与年龄、职业等方面的关系,按收入从这10000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(2x+ϕ)(其中ϕ是实数),若$f(x)≤|{f({\frac{π}{6}})}|$对x∈R恒成立,且$f({\frac{π}{2}})>f(0)$,则f(x)的单调递增区间是(  )
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)B.$[{kπ,kπ+\frac{π}{2}}]({k∈Z})$C.$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]({k∈Z})$D.$[{kπ-\frac{π}{2},kπ}]({k∈Z})$

查看答案和解析>>

同步练习册答案