精英家教网 > 高中数学 > 题目详情
12.已知圆E:x2+(y-$\frac{1}{2}$)2=$\frac{9}{4}$,经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点F1,F2,且与椭圆C在第一象限的交点为A,且F1,E,A三点共线,直线l交椭圆C于M,N两点,且与直线OA平行.
(1)求椭圆C的方程;
(2)求三角形AMN的面积的最大值.

分析 (1)由题意把焦点坐标代入圆的方程求出c,再由条件得F1A为圆E的直径求出|AF1|=3,根据勾股定理求出|AF2|,根据椭圆的定义和a2=b2+c2依次求出a和b的值,代入椭圆方程即可;
(2)由(1)求出A的坐标、直线OA的斜率,设直线l的方程和M、N的坐标,联立直线和椭圆方程消去y,利用韦达定理和弦长公式求出|MN|,由点到直线的距离公式求出点A到直线l的距离,代入三角形的面积公式求出△AMN的面积S的表达式,化简后利用基本不等式求出面积的最大值,

解答 解:(1)如图圆E经过椭圆C的左右焦点F1,F2
∴c2+(0-$\frac{1}{2}$)2=$\frac{9}{4}$,解得c=$\sqrt{2}$,…(2分)
∵F1,E,A三点共线,∴F1A为圆E的直径,则|AF1|=3,
∴AF2⊥F1F2,∴|AF2|2=9-8=1,
∵2a=|AF1|+|AF2|=3+1=4,∴a=2
由a2=b2+c2得,b=$\sqrt{2}$,…(4分)
∴椭圆C的方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1;…(5分)
(2)由(1)得点A的坐标($\sqrt{2}$,1),直线l的斜率为kOA=$\frac{\sqrt{2}}{2}$,…(6分)
则设直线l的方程为y=$\frac{\sqrt{2}}{2}$x+m,设M(x1,y1),N(x2,y2),
联立椭圆方程得,${x}^{2}+\sqrt{2}mx+{m}^{2}-2$=0,
∴x1+x2=-$\sqrt{2}m$,x1x2=m2-2,
且△=2m2-4m2+8>0,解得-2<m<2,…(8分)
∴|MN|=$\sqrt{1+{k}^{2}}$|x2-x1|=$\sqrt{12-3{m}^{2}}$,
∵点A到直线l的距离d=$\frac{\sqrt{6}|m|}{3}$,
∴△AMN的面积S=$\frac{1}{2}×$$\sqrt{12-3{m}^{2}}$×$\frac{\sqrt{6}|m|}{3}$=$\frac{\sqrt{2}}{2}•\sqrt{(4-{m}^{2}){m}^{2}}$≤$\sqrt{2}$…(10分)
当且仅当4-m2=m2,即m=$±\sqrt{2}$,三角形AMN的面积的最大值为$\sqrt{2}$.…(12分)

点评 本题考查椭圆的标准方程,韦达定理和弦长公式,以及直线、圆与椭圆的位置关系等,考查的知识多,综合性强,考查化简计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-4),若$\overrightarrow{a}∥\overrightarrow{b}$则x=(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{1}{2}-{cos^2}x+\sqrt{3}sinxcosx$.
(1)求f(x)单调递增区间;
(2)△ABC中,角A,B,C的对边a,b,c满足${b^2}+{c^2}-{a^2}>\sqrt{3}bc$,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{36}-\frac{y^2}{64}=1$上一点P到双曲线的一个焦点距离为15,则点P到另外一个焦点的距离为(  )
A.3或27B.3C.27D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{x^2}{m}-{y^2}=1$的虚轴长是实轴长的2倍,则m=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件A,“第2次拿出的是白球”为事件B,则P(B|A)是$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2sin(3ωx+$\frac{π}{3}$),其中ω>0
(1)若f(x+θ)是周期为2π的偶函数,求ω及θ的值;
(2)若f(x)在(0,$\frac{π}{3}$]上是增函数,求ω的最大值;
(3)当ω=$\frac{2}{3}$时,将函数f(x)的图象向右平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,如果直角三角形的斜边长为$\sqrt{2}$,那么这个几何体的体积是(  )
A.$\frac{{3+\sqrt{3}}}{2}$B.$3+\sqrt{3}$C.$\frac{1}{6}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金超过130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是2019年.(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30).

查看答案和解析>>

同步练习册答案