精英家教网 > 高中数学 > 题目详情
3.已知函数$f(x)=\frac{1}{2}-{cos^2}x+\sqrt{3}sinxcosx$.
(1)求f(x)单调递增区间;
(2)△ABC中,角A,B,C的对边a,b,c满足${b^2}+{c^2}-{a^2}>\sqrt{3}bc$,求f(A)的取值范围.

分析 (1)f(x)解析式利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式化简为一个角的正弦函数,利用正弦函数的增减性确定出f(x)的单调增区间即可;
(2)利用余弦定理表示cosA,整理后代入已知不等式求出cosA的范围,进而求出A的范围,即可确定出f(A)的范围.

解答 解:(1)f(x)=$\frac{1}{2}$-$\frac{1+cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x=sin(2x-$\frac{π}{6}$),
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,得到-$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z,
则f(x)的增区间为[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z);
(2)由余弦定理得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$,即b2+c2-a2=2bccosA,
代入已知不等式得:2bccosA>$\sqrt{3}$bc,即cosA>$\frac{\sqrt{3}}{2}$,
∵A为△ABC内角,
∴0<A<$\frac{π}{6}$,
∵f(A)=sin(2A-$\frac{π}{6}$),且-$\frac{π}{6}$<2A-$\frac{π}{6}$<$\frac{π}{6}$,
∴-$\frac{1}{2}$<f(A)<$\frac{1}{2}$,
则f(A)的范围为(-$\frac{1}{2}$,$\frac{1}{2}$).

点评 此题考查了余弦定理,两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,正弦函数的定义域与值域,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知集合A={0,1,2,3,4,5},B={-1,0,1,6},且A∩B={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上一点,F1、F2分别是双曲线的左、右焦点,M为△PF1F2的内心,若S${\;}_{△IP{F}_{1}}$=S${\;}_{△MP{F}_{2}}$+$\frac{1}{2}$S${\;}_{△M{F}_{1}{F}_{2}}$成立,则双曲线的离心率为(  )
A.4B.$\frac{5}{2}$C.2D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2lnx-x2
(1)求函数f(x)在x=1处的切线方程;
(2)求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若奇函数f(x)定义域为R,f(x+2)=-f(x)且f(-1)=6,则f(2017)=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于(  )
A.10cm3B.20cm3C.30cm3D.40cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如表提供了某厂节能降耗技术改造后在生产A产品过程中纪录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据:
x3456
y2.5n44.5
根据上表提供的数据,求得y关于x的线性回归方程为$\widehat{y}$=0.7x+0.35,那么表中n的值为(  )注($\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$)
A.3B.3.15C.3.5D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆E:x2+(y-$\frac{1}{2}$)2=$\frac{9}{4}$,经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点F1,F2,且与椭圆C在第一象限的交点为A,且F1,E,A三点共线,直线l交椭圆C于M,N两点,且与直线OA平行.
(1)求椭圆C的方程;
(2)求三角形AMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x-3)在(0,π)上有零点,则a的取值范围是[2,+∞).

查看答案和解析>>

同步练习册答案