精英家教网 > 高中数学 > 题目详情
13.定义在R上的单调函数f(x)满足:f(x+y)=f(x)+f(y),若F(x)=f(asinx)+f(sinx+cos2x-3)在(0,π)上有零点,则a的取值范围是[2,+∞).

分析 ①令x=y=0,则f(0)=2f(0),则f(0)=0;再令y=-x,f(x)+f(-x)=f(0)=0,可得f(x)是奇函数.
②F(x)=f(asinx)+f(sinx+cos2x-3)在(0,π)上有零点.f(-sinx-cos2x+3)在(0,π)上有解;根据函数f(x)是R上的单调函数,asinx=-sinx-cos2x+3在(0,π)上有解.x∈(0,π),sinx≠0;a=$\frac{-sinx-co{s}^{2}x+3}{sinx}$=sinx+$\frac{2}{sinx}$-1,令t=sinx,t∈(0,1];则a=t+$\frac{2}{t}$-1;利用导数研究其单调性即可得出.

解答 解:①令x=y=0,则f(0)=2f(0),则f(0)=0;
再令y=-x,则f(x-x)=f(x)+f(-x)=0,
且f(x)定义域为R,关于原点对称.
∴f(x)是奇函数.
②F(x)=f(asinx)+f(sinx+cos2x-3)在(0,π)上有零点.
∴f(asinx)+f(sinx+cos2x-3)=0在(0,π)上有解;
∴f(asinx)=-f(sinx+cos2x-3)=f(-sinx-cos2x+3)在(0,π)上有解;
又∵函数f(x)是R上的单调函数,
∴asinx=-sinx-cos2x+3在(0,π)上有解.
∵x∈(0,π),
∴sinx≠0;
∴a=$\frac{-sinx-co{s}^{2}x+3}{sinx}$=sinx+$\frac{2}{sinx}$-1;
令t=sinx,t∈(0,1];
则a=t+$\frac{2}{t}$-1;
∵y=t+$\frac{2}{t}$,${y}^{′}=1-\frac{2}{{t}^{2}}$<0,因此函数y在(0,1]上单调递减,
∴a≥2.
故答案为:[2,+∞).

点评 本题考查了抽象函数的奇偶性与单调性、三角函数求值、换元法、利用导数研究函数的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{1}{2}-{cos^2}x+\sqrt{3}sinxcosx$.
(1)求f(x)单调递增区间;
(2)△ABC中,角A,B,C的对边a,b,c满足${b^2}+{c^2}-{a^2}>\sqrt{3}bc$,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2sin(3ωx+$\frac{π}{3}$),其中ω>0
(1)若f(x+θ)是周期为2π的偶函数,求ω及θ的值;
(2)若f(x)在(0,$\frac{π}{3}$]上是增函数,求ω的最大值;
(3)当ω=$\frac{2}{3}$时,将函数f(x)的图象向右平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,如果直角三角形的斜边长为$\sqrt{2}$,那么这个几何体的体积是(  )
A.$\frac{{3+\sqrt{3}}}{2}$B.$3+\sqrt{3}$C.$\frac{1}{6}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在侧棱长为$2\sqrt{3}$的正三棱锥S-ABC中,∠ASB=∠BSC=∠CSA=40°,过A作截面AMN,交SB于M,交SC于N,则截面AMN周长的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC中,C=90°,AB=2AC,在斜边AB上任取一点P,则满足∠ACP≤30°的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲乙两人下棋比赛,规定谁比对方先多胜两局谁就获胜,比赛立即结束;若比赛进行完6局还没有分出胜负则判第一局获胜者为最终获胜且结束比赛.比赛过程中,每局比赛甲获胜的概率为$\frac{2}{3}$,乙获胜的概率为$\frac{1}{3}$,每局比赛相互独立.求:
(1)比赛两局就结束且甲获胜的概率;
(2)恰好比赛四局结束的概率;
(3)在整个比赛过程中,甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金超过130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是2019年.(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知5x=3,$y={log_5}\frac{9}{25}$,则2x-y的值为2.

查看答案和解析>>

同步练习册答案