5£®¼×ÒÒÁ½ÈËÏÂÆå±ÈÈü£¬¹æ¶¨Ë­±È¶Ô·½ÏȶàʤÁ½¾ÖË­¾Í»ñʤ£¬±ÈÈüÁ¢¼´½áÊø£»Èô±ÈÈü½øÐÐÍê6¾Ö»¹Ã»Óзֳöʤ¸ºÔòÅеÚÒ»¾Ö»ñʤÕßΪ×îÖÕ»ñʤÇÒ½áÊø±ÈÈü£®±ÈÈü¹ý³ÌÖУ¬Ã¿¾Ö±ÈÈü¼×»ñʤµÄ¸ÅÂÊΪ$\frac{2}{3}$£¬ÒÒ»ñʤµÄ¸ÅÂÊΪ$\frac{1}{3}$£¬Ã¿¾Ö±ÈÈüÏ໥¶ÀÁ¢£®Çó£º
£¨1£©±ÈÈüÁ½¾Ö¾Í½áÊøÇÒ¼×»ñʤµÄ¸ÅÂÊ£»
£¨2£©Ç¡ºÃ±ÈÈüËľֽáÊøµÄ¸ÅÂÊ£»
£¨3£©ÔÚÕû¸ö±ÈÈü¹ý³ÌÖУ¬¼×»ñʤµÄ¸ÅÂÊ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª±ÈÈüÁ½¾Ö¾Í½áÊøÇÒ¼×»ñʤ±ØÐëµÚÒ»¡¢µÚ¶þ¾Ö±ÈÈü¶¼ÊǼ׻ñʤ£¬ÓÉ´ËÄÜÇó³ö±ÈÈüÁ½¾Ö¾Í½áÊøÇÒ¼×»ñʤµÄ¸ÅÂÊ£®
£¨2£©ÓÉÌâÒâ֪ǰÁ½¾Ö±ÈÈüΪƽÊÖ£¬µÚÈý¡¢µÚËľֱÈÈüΪͬһ¸öÈËʤ£¬ÓÉ´ËÄÜÇó³öÇ¡ºÃ±ÈÈüËľֽáÊøµÄ¸ÅÂÊ£®
£¨3£©ÓÉÌâÒâÖªÔÚÕû¸ö±ÈÈü¹ý³ÌÖеÚÒ»¡¢µÚ¶þ¾Ö±ÈÈüÁ½ÈËΪƽÊÖ£¬µÚÈý¡¢µÚËıÈÈüÁ½ÈËҲΪƽÊÖ£¬µÚÎå¡¢µÚÁù¾Ö¶¼Îª¼×»ñʤ£¬»òÕßÔÚµÚÒ»¡¢µÚ¶þ¾Ö±ÈÈüÁ½ÈËΪƽÊÖ£¬µÚÈý¡¢µÚËľֱÈÈüÁ½ÈËҲΪƽÊÖ£¬µÚÎå¡¢µÚÁù¾Ö±ÈÈüΪƽÊÖµ«µÚÒ»¾ÖÊǼ׻ñʤ£®ÓÉ´ËÄÜÇó³ö¼×»ñʤµÄ¸ÅÂÊ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª±ÈÈüÁ½¾Ö¾Í½áÊøÇÒ¼×»ñʤ±ØÐëµÚÒ»¡¢µÚ¶þ¾Ö±ÈÈü¶¼ÊǼ׻ñʤ£¬
¡à±ÈÈüÁ½¾Ö¾Í½áÊøÇÒ¼×»ñʤµÄ¸ÅÂÊΪ$P=\frac{2}{3}¡Á\frac{2}{3}=\frac{4}{9}$£»¡­£¨3·Ö£©
£¨2£©ÓÉÌâÒâ֪ǰÁ½¾Ö±ÈÈüΪƽÊÖ£¬µÚÈý¡¢µÚËľֱÈÈüΪͬһ¸öÈËʤ£¬
¡àÇ¡ºÃ±ÈÈüËľֽáÊøµÄ¸ÅÂÊΪ$P=C_2^1£¨{\frac{2}{3}}£©£¨{\frac{1}{3}}£©£¨{{{£¨{\frac{2}{3}}£©}^2}+{{£¨{\frac{1}{3}}£©}^2}}£©$=$\frac{20}{81}$£»¡­£¨7·Ö£©
£¨3£©ÓÉÌâÒâÖªÔÚÕû¸ö±ÈÈü¹ý³ÌÖеÚÒ»¡¢µÚ¶þ¾Ö±ÈÈüÁ½ÈËΪƽÊÖ£¬
µÚÈý¡¢µÚËıÈÈüÁ½ÈËҲΪƽÊÖ£¬µÚÎå¡¢µÚÁù¾Ö¶¼Îª¼×»ñʤ£¬
»òÕßÔÚµÚÒ»¡¢µÚ¶þ¾Ö±ÈÈüÁ½ÈËΪƽÊÖ£¬µÚÈý¡¢µÚËľֱÈÈüÁ½ÈËҲΪƽÊÖ£¬
µÚÎå¡¢µÚÁù¾Ö±ÈÈüΪƽÊÖµ«µÚÒ»¾ÖÊǼ׻ñʤ£®
¡àÔÚÕû¸ö±ÈÈü¹ý³ÌÖУ¬¼×»ñʤµÄ¸ÅÂÊΪ$P={[{C_2^1£¨{\frac{2}{3}}£©£¨{\frac{1}{3}}£©}]^2}{£¨{\frac{2}{3}}£©^2}+£¨{\frac{2}{3}}£©£¨{\frac{1}{3}}£©{[{C_2^1£¨{\frac{2}{3}}£©£¨{\frac{1}{3}}£©}]^2}=\frac{32}{243}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏ໥¶ÀÁ¢Ê¼þ¸ÅÂʳ˷¨¹«Ê½¡¢»¥³âʼþ¸ÅÂʼӷ¨¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èç±íÌṩÁËij³§½ÚÄܽµºÄ¼¼Êõ¸ÄÔìºóÔÚÉú²úA²úÆ·¹ý³ÌÖмͼµÄ²úÁ¿x£¨¶Ö£©ÓëÏàÓ¦µÄÉú²úÄܺÄy£¨¶Ö£©µÄ¼¸×é¶ÔÓ¦Êý¾Ý£º
x3456
y2.5n44.5
¸ù¾ÝÉϱíÌṩµÄÊý¾Ý£¬ÇóµÃy¹ØÓÚxµÄÏßÐԻع鷽³ÌΪ$\widehat{y}$=0.7x+0.35£¬ÄÇô±íÖÐnµÄֵΪ£¨¡¡¡¡£©×¢£¨$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£¬$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£©
A£®3B£®3.15C£®3.5D£®4.5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®É躯Êý$f£¨x£©=\left\{\begin{array}{l}\int_1^e{\frac{1}{t}dt£¬x£¾\sqrt{2}}\\ \frac{1}{3}£¬x¡Ü\sqrt{2}\end{array}\right.$£¬Èô$f£¨{x_0}£©£¾\frac{1}{2}$£¬Ôòx0µÄȡֵ·¶Î§Îªx0£¾$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¶¨ÒåÔÚRÉϵĵ¥µ÷º¯Êýf£¨x£©Âú×㣺f£¨x+y£©=f£¨x£©+f£¨y£©£¬ÈôF£¨x£©=f£¨asinx£©+f£¨sinx+cos2x-3£©ÔÚ£¨0£¬¦Ð£©ÉÏÓÐÁãµã£¬ÔòaµÄȡֵ·¶Î§ÊÇ[2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬²àÃæPADÊDZ߳¤Îª4µÄÕýÈý½ÇÐΣ¬µ×ÃæABCDΪÕý·½ÐΣ¬²àÃæPAD¡Íµ×ÃæABCD£¬MΪµ×ÃæABCDÄÚµÄÒ»¸ö¶¯µã£¬ÇÒÂú×ã$\overrightarrow{MP}•\overrightarrow{MC}=0$£¬ÔòµãMµ½Ö±ÏßABµÄ×î¶Ì¾àÀëΪ£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®$4-\sqrt{5}$C£®$3-\sqrt{5}$D£®$4-2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=sin£¨2x+ϕ£©£¨ÆäÖÐϕÊÇʵÊý£©£¬Èô$f£¨x£©¡Ü|{f£¨{\frac{¦Ð}{6}}£©}|$¶Ôx¡ÊRºã³ÉÁ¢£¬ÇÒ$f£¨{\frac{¦Ð}{2}}£©£¾f£¨0£©$£¬Ôòf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ£¨¡¡¡¡£©
A£®[k¦Ð-$\frac{¦Ð}{3}$£¬k¦Ð+$\frac{¦Ð}{6}$]£¨k¡ÊZ£©B£®$[{k¦Ð£¬k¦Ð+\frac{¦Ð}{2}}]£¨{k¡ÊZ}£©$C£®$[{k¦Ð+\frac{¦Ð}{6}£¬k¦Ð+\frac{2¦Ð}{3}}]£¨{k¡ÊZ}£©$D£®$[{k¦Ð-\frac{¦Ð}{2}£¬k¦Ð}]£¨{k¡ÊZ}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÁâÐÎABCDµÄ±ß³¤Îª2£¬¡ÏABC=60¡ã£¬Ôò$\overrightarrow{BD}$•$\overrightarrow{CD}$=6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®¹ýÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãF×÷бÂÊΪ1µÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£®ÈôÏòÁ¿$\overrightarrow{OA}$+$\overrightarrow{OB}$ÓëÏòÁ¿$\overrightarrow{a}$=£¨3£¬-1£©¹²Ïߣ¬Ôò¸ÃÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{3}$B£®$\frac{\sqrt{6}}{3}$C£®$\frac{\sqrt{3}}{4}$D£®$\frac{\sqrt{2}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®º¯Êýy=£¨1-sinx£©2µÄµ¼ÊýÊÇsin2x-2cosx£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸