精英家教网 > 高中数学 > 题目详情
16.设函数$f(x)=\left\{\begin{array}{l}\int_1^e{\frac{1}{t}dt,x>\sqrt{2}}\\ \frac{1}{3},x≤\sqrt{2}\end{array}\right.$,若$f({x_0})>\frac{1}{2}$,则x0的取值范围为x0>$\sqrt{2}$.

分析 x>$\sqrt{2}$,f(x)=lnx|${\;}_{1}^{e}$=1,利用$f({x_0})>\frac{1}{2}$,可得x0的取值范围.

解答 解:x>$\sqrt{2}$,f(x)=lnx|${\;}_{1}^{e}$=1,
∵$f(x)=\left\{\begin{array}{l}\int_1^e{\frac{1}{t}dt,x>\sqrt{2}}\\ \frac{1}{3},x≤\sqrt{2}\end{array}\right.$,$f({x_0})>\frac{1}{2}$,
∴x0>$\sqrt{2}$,
故答案为x0>$\sqrt{2}$.

点评 本题考查分段函数,考查不等式的解法,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.直线x-$\sqrt{3}$y=3的倾斜角的大小为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{x^2}{m}-{y^2}=1$的虚轴长是实轴长的2倍,则m=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2sin(3ωx+$\frac{π}{3}$),其中ω>0
(1)若f(x+θ)是周期为2π的偶函数,求ω及θ的值;
(2)若f(x)在(0,$\frac{π}{3}$]上是增函数,求ω的最大值;
(3)当ω=$\frac{2}{3}$时,将函数f(x)的图象向右平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为$\sqrt{3}$,又椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$,左右顶点分别为P,Q.
(1)求椭圆C的方程;
(2)过点D(m,0)(m∈(-2,2),m≠0)作两条射线分别交椭圆C于A,B两点(A,B在长轴PQ同侧),直线AB交长轴于点S(n,0),且有∠ADP=∠BDQ.求证:mn为定值;
(3)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的λ倍,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,如果直角三角形的斜边长为$\sqrt{2}$,那么这个几何体的体积是(  )
A.$\frac{{3+\sqrt{3}}}{2}$B.$3+\sqrt{3}$C.$\frac{1}{6}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在侧棱长为$2\sqrt{3}$的正三棱锥S-ABC中,∠ASB=∠BSC=∠CSA=40°,过A作截面AMN,交SB于M,交SC于N,则截面AMN周长的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲乙两人下棋比赛,规定谁比对方先多胜两局谁就获胜,比赛立即结束;若比赛进行完6局还没有分出胜负则判第一局获胜者为最终获胜且结束比赛.比赛过程中,每局比赛甲获胜的概率为$\frac{2}{3}$,乙获胜的概率为$\frac{1}{3}$,每局比赛相互独立.求:
(1)比赛两局就结束且甲获胜的概率;
(2)恰好比赛四局结束的概率;
(3)在整个比赛过程中,甲获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.我国是世界上严重缺水的国家,某市政府为了鼓励全市30万居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费,并希望约80%的居民每月的用水量不超过标准x(吨).为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中a的值,并估计全市居民中月均用量不低于3吨的人数;
(2)若每组内部,用水量视为均匀分布,估计x的值(精确到0.1).

查看答案和解析>>

同步练习册答案