分析 (1)设P$(4cosθ,\sqrt{7}sinθ)$,θ∈[0,2π).可得|OP|2+|PF|2=18$(cosθ-\frac{2}{3})^{2}$+15,利用二次函数的单调性与三角函数的值域即可得出.
(2)设P$(4cosθ,\sqrt{7}sinθ)$,θ∈[0,2π).可得d=$\frac{|4cosθ+\sqrt{7}sinθ-1|}{\sqrt{2}}$=$\frac{|\sqrt{23}sin(θ+φ)-1|}{\sqrt{2}}$,利用三角函数的单调性与值域即可得出.
解答 解:(1)F(3,0),设P$(4cosθ,\sqrt{7}sinθ)$,θ∈[0,2π).
则|OP|2+|PF|2=16cos2θ+7sin2θ+(4cosθ-3)2+7sin2θ
=18cos2θ-24cosθ+23
=18$(cosθ-\frac{2}{3})^{2}$+15∈[15,65].
(2)设P$(4cosθ,\sqrt{7}sinθ)$,θ∈[0,2π).
则d=$\frac{|4cosθ+\sqrt{7}sinθ-1|}{\sqrt{2}}$=$\frac{|\sqrt{23}sin(θ+φ)-1|}{\sqrt{2}}$∈$[\frac{\sqrt{46}-\sqrt{2}}{2},\frac{\sqrt{46}+1}{2}]$,其中cosφ=$\frac{\sqrt{7}}{\sqrt{23}}$,sinφ=$\frac{4}{\sqrt{23}}$.
点评 本题考查了椭圆的标准方程及其性质、二次函数的单调性、三角函数的单调性值域、和差化积公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {1,2} | C. | {2,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3或27 | B. | 3 | C. | 27 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -6 | B. | 6 | C. | $\frac{10}{3}$ | D. | -$\frac{10}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com