精英家教网 > 高中数学 > 题目详情
14.若命题“?x0∈R,x02-3mx0+9<0”为假命题,则实数m的取值范围是(  )
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)

分析 根据特称命题的性质进行转化求解即可.

解答 解:∵命题“?x0∈R,x02-3mx0+9<0”为假命题,
∴命题?x∈R,x2-3mx+9≥0为真命题,
即判别式△=9m2-36≤0,
即m2≤4,即-2≤m≤2,
故选:C

点评 本题主要考查含有量词的命题的否定,根据条件转化为不等式恒成立是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)设函数f(x)在x=3处可导,且f′(3)=-2,f(3)=2,求$\underset{lim}{x→3}$$\frac{2x-3f(x)}{x-3}$的值;
(2)设函数f(x)在R上处处可导,已知f(-x)在x=a处的导数为A,求f(x)在-a处的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知定义在D={x∈R|x≠0}上的函数y=f(x),满足x>0时总有f(x)<0,f(1)=-2,并且对任意x1,x2∈D且x1+x2≠0,有f(x1+x2)=$\frac{f({x}_{1})•f({x}_{2})}{f({x}_{1})+f({x}_{2})}$,则不等式f(2x+1)>-1的解集为(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某港口船舶停靠的方案是先到先停.
(Ⅰ)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为奇数,则甲先停靠;若两数之和为偶数,则乙先停靠,这种对着是否公平?请说明理由.
(2)根据已往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据参考如下:记X,Y都是0~1之间的均与随机数,用计算机做了100次试验,得到的结果有12次,满足X-Y≥0.5,有6次满足X-2Y≥0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=$\left\{\begin{array}{l}{lnx,x≥2}\\{3x,x<2}\end{array}\right.$,则f(f(e))(e是自然对数的底数)的值为(  )
A.1B.3C.3eD.ln3e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义[x]与{x}是对一切实数都有定义的函数,[x]的值等于不大于x的最大整数,{x}的值是x-[x],则下列结论正确的是②③④(填上正确结论的序号).
①[-x]=-[x];
②[x]+[y]≤[x+y];
③{x}+{y}≥{x+y};
④{x}是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中的真命题是(  )
A.若|a|≠|b|,则a≠bB.y=cos2x的最小正周期为2π
C.若M⊆N,那么M∪N=MD.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,则B为锐角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)的定义域为[2,4],则函数y=f(log${\;}_{\frac{1}{2}}$x)的定义域为(  )
A.[$\frac{1}{2}$,1]B.[4,16]C.[2,4]D.[$\frac{1}{16}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设不等式组$\left\{\begin{array}{l}{x<0}\\{y<0}\\{y≥-nx-3n}\end{array}\right.$所表示的平面区域为Dn,记Dn内的格点(格点即横坐标和纵坐标均为整数的点)个数为f(n)(n∈N*).
(1)求f(1),f(2)的值及f(n)的表达式;
(2)记数列{f(n)}的前n项和为Sn,若Sn>λn对任意正整数n恒成立,求λ的取值范围.

查看答案和解析>>

同步练习册答案