精英家教网 > 高中数学 > 题目详情
16.(1)等差数列{an}中,a8=6,a10=0,求{an}的通项公式an及前n项和Sn,并指出Sn取得最大值时n的值;
(2)等比数列{an}中,${a_1}=\frac{1}{2}$,a4=4,求数列{an}的通项公式an及前n项和Sn

分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)利用等比数列的通项公式与求和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,
∵a10-a8=2d=-6,∴d=-3,a8=a1+7d=a1-21=6,∴a1=27.
∴an=27-3(n-1)=30-3n.
Sn=27n+$\frac{n(n-1)}{2}$×(-3)=$-\frac{3}{2}$n2+$\frac{57}{2}$n=$-\frac{3}{2}$$(n-\frac{19}{2})^{2}$+$\frac{1083}{8}$.
当n=9,10时,Sn最大.
(2)设等比数列{an}的公比为q,∵${a_1}=\frac{1}{2}$,a4=4,
∴$\frac{1}{2}×{q}^{3}$=4,解得q=2.
∴${a_n}=\frac{1}{2}•{2^{n-1}}={2^{n-2}}$,${S_n}=\frac{{\frac{1}{2}(1-{2^n})}}{1-2}=\frac{1}{2}({2^n}-1)={2^{n-1}}-\frac{1}{2}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合M=$\left\{{x\left|{\frac{x^2}{16}+\frac{y^2}{9}=1}\right.}\right\},N=\left\{{y\left|{\frac{x}{4}+\frac{y}{3}=1}\right.}\right\}$,则M∩N=(  )
A.B.{(4,0),(0,3)}C.{4,3}D.[-4,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=2sin2x+mcosx+1,
(1)若m=1,求f(x)的最大值和最小值;
(2)若m∈R,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a1+a15=3,则S15=(  )
A.45B.30C.22.5D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等比数列{an}中,a1>0,a2a4=25,则a3=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}满足a1=1,an+1=$\frac{n}{n+1}{a_n}$,(n∈N+),则an=$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在四边形ABCD中,若$\overrightarrow{AC}=(-2,1),\overrightarrow{BD}$=(2,4),则四边形ABCD的面积为(  )
A.$2\sqrt{5}$B.$\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow{AP}$=$\frac{3}{4}$$\overrightarrow{PB}$,若$\overrightarrow{BA}$=λ$\overrightarrow{AP}$,则λ的值为(  )
A.$\frac{3}{4}$B.$\frac{7}{3}$C.-$\frac{7}{3}$D.-$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案