精英家教网 > 高中数学 > 题目详情
4.“a=1”是“函数f(x)=eax+e-ax为偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分不必要条件

分析 函数f(x)为偶函数,利用f(-x)=f(x),可得a的取值范围,即可判断出结论.

解答 解:若函数f(x)为偶函数,
则f(-x)=f(x),∴eax+e-ax=eax+e-ax
上述等式对于?a∈R都成立,
因此“a=1”是“函数f(x)=eax+e-ax为偶函数”的充分不必要条件.
故选:A.

点评 本题考查了偶函数的定义、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=(x2-3)ex,则关于x的方程f2(x)-mf(x)-$\frac{12}{{e}^{2}}$=0的实根个数可能是(  )
A.3B.1C.3或5D.1或3或5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=4,|$\overrightarrow{a}$-$\overrightarrow{b}$|=5,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5,求|$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U={1,2,3,4,5},A={1,2,4},B={2,5},则A∩(∁UB)=(  )
A.{1,3,4}B.{1,4}C.{3,4}D.{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某超市五一促销,随机对10~60岁的人群抽查了n人,调查的每个人若能完整写出5个或5个以上外国节日,则能获得20元优惠券的奖励,若能完整写出8个或8个以上中国传统节日就能获得30元优惠券,调查的每个人都同时回答了这两个问题,统计结果如下表
(Ⅰ)若以表中的频率近似看作各年龄段回答问题获得优惠劵的概率,组织者随机请一个家庭中的两名成员(大人42岁,孩子16岁)回答这两个问题,两个调查相互独立均无影响,分别写出这个家庭两个成员获得奖励的分布列并求该家庭获得奖励的期望;
(Ⅱ)求该家庭获得奖励为50元优惠券的概率.
年龄段外国传统节日中国传统节日
获优惠劵的人数占本组人数频率获优惠券的人数占本组人数频率
[10,20)30a300.5
[20,30)480.8360.6
[30,40)360.6480.8
[40,50)200.524b
[50,60]40.2160.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=-$\frac{1}{2}$x2-3x+tlnx在(1,+∞)上是减函数,则实数t的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.(-∞,4)D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在棱长为1的正方体ABCD-A1B1C1D1中,点F是棱CC1的中点,P是正方体表面上的一点,若D1P⊥AF,则线段D1P长度的取值范围是(  )
A.(0,$\sqrt{2}$)B.(0,$\frac{\sqrt{34}}{4}$]C.(0,$\frac{3}{2}$]D.(0,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.将某商场A,B两个品牌店在某日14:00-18:00四个时段(每个小时作为一个时段)的客流量统计并绘制成如图所示的茎叶图.
(1)若从B商场中任选2个时段的数据,求这2个时段的数据均多于A商场数据平均数的概率;
(2)从这8个数据中随机选取3个,设这3个数据中大于35的个数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在正方体ABCD-A1B1C1D1中,求证:B1D⊥平面A1BC1,写出证明过程,并分析上述证明过程中,运用了几个“三段论”推理,各段推理的大前提是什么?

查看答案和解析>>

同步练习册答案