精英家教网 > 高中数学 > 题目详情
4.求经过三点A(1,-1)、B(1,4)、C(4,2)的圆的方程.

分析 由题意设出圆的一般式方程,把A,B,C的坐标代入圆的方程,联立方程组求得D,E,F的值得答案.

解答 解:设过三点A(1,-1)、B(1,4)、C(4,2)的圆的方程为x2+y2+Dx+Ey+F=0,
∴$\left\{\begin{array}{l}{2+D-E+F=0①}\\{17+D+4E+F=0②}\\{20+4D+2E+F=0③}\end{array}\right.$,
由①②得:E=-3 ④,
由②③得:3D-2E+3=0 ⑤,
把④代入⑤得:D=-3,
把D=-3,E=-3代入①得:F=-2.
∴经过三点A(1,-1)、B(1,4)、C(4,2)的圆的方程为x2+y2-3x-3y-2=0.

点评 本题考查圆的一般式方程,训练了待定系数法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,扇形MON的半径为2,圆心角为$\frac{2}{3}$π,四边形ABCD为扇形的内接等腰梯形,其中底边AB的两个端点分别在半径ON和0M上,C、D在弧$\widehat{MQN}$上,Q为弧$\widehat{MN}$的中点,∠ABC=$\frac{2}{3}$π,求梯形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知平面向量|$\overrightarrow{OA}$|=2,$\overrightarrow{OA}$与$\overrightarrow{OB}$-$\overrightarrow{OA}$的夹角为120°,$\overrightarrow{OC}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),求|$\overrightarrow{OC}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x2+nx+m,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围是[0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{a}$•$\overrightarrow{b}$=0,|$\overrightarrow{a}$+$\overrightarrow{b}$|=5$\sqrt{2}$,则|$\overrightarrow{b}$|=3$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在递增等差数列{an}中,a1=2,a3是a1和a9的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{1}{{({n+1}){a_n}}}$,Sn为数列{bn}的前n项和,是否存在实数m,使得Sn<m对于任意的n∈N+恒成立?若存在,请求实数m的取值范围,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a,b均为正数,且a2+$\frac{1}{4}$b2=1,则a$\sqrt{1+{b}^{2}}$的最大值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,四棱锥P-ABCD中,∠BAD=∠ABC=90°,BC=2AD,△PAB和△PAD都是等边三角形,则异面直线CD与PB所成角的大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设复数z满足(1-i)z=2i,则z在复平面内所对应的点位于第二象限.

查看答案和解析>>

同步练习册答案