精英家教网 > 高中数学 > 题目详情
6.设复数z满足(1-i)z=2i,则z在复平面内所对应的点位于第二象限.

分析 由(1-i)z=2i,得$z=\frac{2i}{1-i}$,然后利用复数代数形式的乘除运算化简复数z,求出z在复平面内所对应的点的坐标,则答案可求.

解答 解:由(1-i)z=2i,
得$z=\frac{2i}{1-i}=\frac{2i(1+i)}{(1-i)(1+i)}=-1+i$,
则z在复平面内所对应的点的坐标为:(-1,1),位于第二象限.
故答案为:二.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求经过三点A(1,-1)、B(1,4)、C(4,2)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin2x+$\sqrt{3}sinxcosx,({x∈R})$.
(1)求函数f(x)的最小正周期;
(2)当$x∈[{0,\frac{π}{2}}]$时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设全集U=R,集合A={x|x>0},B={x|x<1},则集合(∁UA)∩B=(  )
A.(-∞,0)B.(-∞,0]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.幂函数y=f(x)的图象经过点(2,4),则f(x)的解析式为(  )
A.f(x)=2xB.f(x)=x2C.f(x)=2xD.f(x)=log2x+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an}中,a1=1,且a2+a4=3(a3+1).
(1)求数列{an}的通项公式;
(2)设bn=log3a2+log3a3+log3a4+…+log3an+1,求数列{$\frac{1}{{b}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若m为实数且(2+mi)(m-2i)=-4-3i,则m=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(-3,1)则下列结论正确的是(  )
A.$\overrightarrow{a}$⊥$\overrightarrow{b}$B.$\overrightarrow{a}$∥$\overrightarrow{b}$C.$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$)D.$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow{b}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=56,2an+1=2an-12(n∈N*).
(1)求a101
(2)求此数列前n项和Sn的最大值;
(3)求数列{|an|}的前n项和Tn

查看答案和解析>>

同步练习册答案