精英家教网 > 高中数学 > 题目详情

【题目】椭圆上顶点为为椭圆中心,为椭圆的右焦点,且焦距为,离心率为

1)求椭圆的标准方程;

2)直线交椭圆于两点,判断是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

【答案】12)存在,

【解析】

1)根据椭圆的焦距为,离心率为,解得:,故椭圆的标准方程为

2)设直线的方程为,代入到,设,由韦达定理得:,因为可得:

代入整理可得,解得:,即可求出直线方程.

1)设椭圆的标准方程为,焦距为2,故

故椭圆的标准方程为

2)设的垂心,

设直线的方程为,代入到

,解得

由根与系数的关系,得

解得(舍去).

故存在直线,使点恰为的垂心,且直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】今年是新中国成立70周年.70年来,在中国共产党的坚强领导下,全国各族人民团结心,迎难而上,开拓进取,奋力前行,创造了一个又一个人类发展史上的伟大奇迹,中华民族迎来了从站起来、富起来到强起来的伟大飞跃.某公司统计了第年(2013年是第一年)的经济效益为(千万元),得到如下表格:

3

4

5

6

2.5

3

4

4.5

若由表中数据得到关于的线性回归方程是,则可预测2020年经济效益大约是(

A.5.95千万元B.5.25千万元C.5.2千万元D.5千万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=2ax2+2bx,若存在实数x0∈(0t),使得对任意不为零的实数ab均有fx0)=a+b成立,则t的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程选讲

在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系, 已知曲线的极坐标方程为,直线的极坐标方程为

(Ⅰ)写出曲线和直线的直角坐标方程;

(Ⅱ)设直线过点与曲线交于不同两点的中点为的交点为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左右顶点,点为椭圆上一点,点关于轴的对称点为,且.

1)若椭圆经过圆的圆心,求椭圆的方程;

2)在(1)的条件下,若过点的直线与椭圆相交于不同的两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每个国家对退休年龄都有不一样的规定,从2018年开始我国关于延迟退休的话题一直在网上热议,为了了解市民对“延迟退休”的态度,现从某地市民中随机选取100人进行调查,调查情况如下表:

年龄段(单位:岁)

被调查的人数

赞成的人数

1)从赞成“延迟退休”的人中任选1人,此人年龄在的概率为,求出表格中的值;

2)在被调查的人中,年龄低于35岁的人可以认为“低龄人”,年龄不低于35岁的人可以认为“非低龄人”,试作出是否赞成“延迟退休”与“低龄与否”的列联表,并指出有无的把握认为是否赞成“延迟退休”与“低龄与否”有关,并说明理由.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①已知,则

为空间四点,若不构成空间的一个基底,那么共面;

③已知,则与任何向量都不构成空间的一个基底;

④若共线,则所在直线或者平行或者重合.

正确的结论的个数为(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案