【题目】给出以下命题:
⑴“
”是“曲线
表示椭圆”的充要条件
⑵命题“若
,则
”的否命题为:“若
,则
”
⑶
中,
.
是斜边
上的点,
.以
为起点任作一条射线
交
于
点,则
点落在线段
上的概率是 ![]()
⑷设随机变量
服从正态分布
,若
,则 ![]()
则正确命题有( )个
A.![]()
B.![]()
C.![]()
D.![]()
科目:高中数学 来源: 题型:
【题目】已知从A地到B地共有两条路径L1和L2 , 据统计,经过两条路径所用的时间互不影响,且经过L1与L2所用时间落在各时间段内的频率分布直方图分别如图(1)和图(2). ![]()
现甲、乙两人分别有40分钟和50分钟时间用于从A地到B地.
(1)为了尽最大可能在各自允许的时间内赶到B地,甲和乙应如何选择各自的路径?
(2)用X表示甲、乙两人中在允许的时间内能赶到B地的人数,针对(1)的选择方案,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
.
(1)求曲线
的参数方程;
(2)在曲线
上任取一点
,求的
最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在原点,离心率为
,右焦点到直线
的距离为2.
(1)求椭圆
的方程;
(2)椭圆下顶点为
,直线
(
)与椭圆相交于不同的两点
,当
时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若曲线
在
处的切线方程为
,求
的极值;
(2)若
,是否存在
,使
的极值大于零?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=sin(ωx+φ)(其中|φ|<
)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点( ) ![]()
A.向左平移
个单位长度
B.向右平移
个单位长度
C.向左平移
个单位长度
D.向右平移
个单位长度
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=e2x , g(x)=kx+1(k∈R). (Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;
(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)﹣g(x)|>2x恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的方程是y=8,圆C的参数方程是
(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求直线l和圆C的极坐标方程;
(Ⅱ)射线OM:θ=α(其中
)与圆C交于O、P两点,与直线l交于点M,射线ON:
与圆C交于O、Q两点,与直线l交于点N,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com