科目:高中数学 来源: 题型:解答题
已知函数, .
(Ⅰ)如果函数在上是单调函数,求的取值范围;
(Ⅱ)是否存在正实数,使得函数在区间内有两个不同的零点?若存在,请求出的取值范围;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
函数,其中为常数.
(1)证明:对任意,的图象恒过定点;
(2)当时,判断函数是否存在极值?若存在,求出极值;若不存在,说明理由;
(3)若对任意时,恒为定义域上的增函数,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=lnx-ax2+(2-a)x
(1)讨论f(x)的单调性;(2)设a>0,证明:当0<x<时,f>f;
(3)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数.
(1)求证:函数在点处的切线恒过定点,并求出定点坐标;
(2)若在区间上恒成立,求的取值范围;
(3)当时,求证:在区间上,满足恒成立的函数
有无穷多个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com