精英家教网 > 高中数学 > 题目详情


解:(Ⅰ)当时,
,则上单调递减,不符题意。---2分
,要使单调递增,必须满足 ,∴ 。---6分
(Ⅱ)若,则无最大值,故,∴为二次函数,
要使有最大值,必须满足,即
此时,时,有最大值。----8分
取最小值时,,依题意,有,----10分

,∴,得,此时
∴满足条件的实数对

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)如果函数上是单调函数,求的取值范围;
(Ⅱ)是否存在正实数,使得函数在区间内有两个不同的零点?若存在,请求出的取值范围;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
定义在(0,+∞)上的函数,且处取极值。
(Ⅰ)确定函数的单调性。
(Ⅱ)证明:当时,恒有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
函数,其中为常数.
(1)证明:对任意的图象恒过定点;
(2)当时,判断函数是否存在极值?若存在,求出极值;若不存在,说明理由;
(3)若对任意时,恒为定义域上的增函数,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx-ax2+(2-a)x
(1)讨论f(x)的单调性;(2)设a>0,证明:当0<x<时,f>f
(3)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求证:函数在点处的切线恒过定点,并求出定点坐标;
(2)若在区间上恒成立,求的取值范围;
(3)当时,求证:在区间上,满足恒成立的函数
有无穷多个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数.
(Ⅰ)设,讨论的单调性;
(Ⅱ)若对任意恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过坐标原点O,且在点 处的切线的斜率是5.
(1)求实数的值;
(2)求在区间上的最大值;

查看答案和解析>>

同步练习册答案