![]()
科目:高中数学 来源: 题型:解答题
已知函数
,
.
(Ⅰ)如果函数
在
上是单调函数,求
的取值范围;
(Ⅱ)是否存在正实数
,使得函数
在区间
内有两个不同的零点?若存在,请求出
的取值范围;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数
.
(1)若曲线
在点
处的切线与直线
垂直,求函数
的单调区间;
(2)若对于
都有
成立,试求
的取值范围;
(3)记
.当
时,函数
在区间
上有两个零点,
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
函数
,其中
为常数.
(1)证明:对任意
,
的图象恒过定点;
(2)当
时,判断函数
是否存在极值?若存在,求出极值;若不存在,说明理由;
(3)若对任意
时,
恒为定义域上的增函数,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=lnx-ax2+(2-a)x
(1)讨论f(x)的单调性;(2)设a>0,证明:当0<x<
时,f
>f
;
(3)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明f′(x0)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(1)求证:函数
在点
处的切线恒过定点,并求出定点坐标;
(2)若
在区间
上恒成立,求
的取值范围;
(3)当
时,求证:在区间
上,满足
恒成立的函数![]()
有无穷多个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com