6£®Ä³ÆóÒµ×ÔÐÐÉè¼ÆÁËÁ½ÌõijÖÖ´óÐÍÉ豸µÄÉú²úÏߣ¬·Ö±ð³ÆÎª1ºÅÏߺÍ2ºÅÏߣ¬¾­¹ýÁ½ÄêµÄÔËÐУ¬Ã¿ÌõÉú²úÏßÉú²úһ̨ºÏ¸ñµÄ¸Ã´óÐÍÉ豸µÄʱ¼äÊý¾Ýͳ¼ÆÈç±í£º
ʱ¼ä£¨Ì죩15¡«2525¡«3535¡«4545¡«5555¡«65
1ºÅÏßÉú²úһ̨ºÏ¸ñµÄ¸Ã´óÐÍÉ豸µÄƵÂÊ0.10.150.450.20.1
2ºÅÏßÉú²úһ̨ºÏ¸ñµÄ¸Ã´óÐÍÉ豸µÄƵÂÊ00.250.40.30.05
ÆäÖÐm¡«n±íʾÉú²úһ̨ºÏ¸ñµÄ¸Ã´óÐÍÉ豸µÄʱ¼ä´óÓÚmÌì¶ø²»³¬¹ýnÌ죬m£¬nΪÕýÕûÊý£®
£¨1£©ÏÖ¸ÃÆóÒµ½Óµ½¼×¡¢ÒÒÁ½¹«Ë¾¸÷Ò»¸ö¶©µ¥£¬Ã¿¸ö¹«Ë¾ÐèÒªÉú²úһ̨ºÏ¸ñµÄ¸Ã´óÐÍÉ豸£¬¼×¡¢ÒÒÁ½¹«Ë¾ÒªÇó½»»õʱ¼ä·Ö±ðΪ²»³¬¹ý45ÌìºÍ55Ì죬ΪÁ˾¡×î´ó¿ÉÄÜÔڼס¢ÒÒÁ½¹«Ë¾¶©µ¥ÒªÇóµÄʱ¼äÄÚ½»»õ£¬¸ÃÆóÒµÓ¦ÈçºÎÑ¡ÔñÉú²ú¼×¡¢ÒÒÁ½¹«Ë¾¶©¹ºµÄ¸Ã´óÐÍÉ豸µÄÉú²úÏߣ»
£¨2£©¸ÃÆóÒµÉú²úµÄÕâÖÖ´óÐÍÉ豸µÄÖÊÁ¿£¬ÒÔÆäÖÊÁ¿µÈ¼¶ÏµÊýtÀ´ºâÁ¿£¬tµÄÖµÔ½´ó£¬±íÃ÷ÖÊÁ¿Ô½ºÃ£¬ÏÂÃæÊÇÁ½ÌõÉú²úÏßÉú²úµÄ6̨ºÏ¸ñµÄ¸Ã´óÐÍÉ豸µÄÖÊÁ¿µÈ¼¶ÏµÊýµÄ¾¥Ò¶Í¼£®

ÊÔ´ÓÖÊÁ¿µÈ¼¶ÏµÊýµÄƽ¾ùÊýºÍ·½²îµÄ½Ç¶È¶Ô¸ÃÆóÒµµÄÁ½ÌõÉú²úÏßÉú²úµÄÕâÖֺϸñµÄ´óÐÍÉ豸µÄÖÊÁ¿×ö³ö·ÖÎö£®

·ÖÎö £¨I£©ÓÃAk±íʾʼþ¡°kºÅÏßÉú²ú¼×¹«Ë¾¶©¹ºµÄºÏ¸ñµÄ´óÐÍÉ豸ʱ£¬Ôڹ涨µÄʱ¼äÄÚ½»»õ¡±£¬ÓÃBk±íʾʼþ¡°kºÅÏßÉú²úÒÒ¹«Ë¾¶©¹ºµÄºÏ¸ñµÄ´óÐÍÉ豸ʱ£¬Ôڹ涨µÄʱ¼äÄÚ½»»õ¡±£¬ÀûÓÃÆµÂʹÀ¼ÆÏàÓ¦µÄ¸ÅÂʿɵÃP£¨A1£©£¾P£¨A2£©£¬P£¨B2£©£¾P£¨B1£©£¬´Ó¶øµÃ³ö½áÂÛ£»
£¨II£©1ºÅÓë2ºÅÏßÉú²úºÏ¸ñµÄ´óÐÍÉ豸µÄÖÊÁ¿µÈ¼¶ÏµÊýµÄƽ¾ùÊý¶¼ÊÇ17£¬ÔÙ¼ÆËãËüÃǵķ½²î£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£º£¨1£©ÓÃAk±íʾʼþ¡°kºÅÏßÉú²ú¼×¹«Ë¾¶©¹ºµÄºÏ¸ñµÄ´óÐÍÉ豸ʱ£¬Ôڹ涨µÄʱ¼äÄÚ½»»õ¡±£¬ÓÃBk±íʾʼþ¡°kºÅÏßÉú²úÒÒ¹«Ë¾¶©¹ºµÄºÏ¸ñµÄ´óÐÍÉ豸ʱ£¬Ôڹ涨µÄʱ¼äÄÚ½»»õ¡±£¬ÆäÖÐk=1£¬2£®
ÓÃÆµÂʹÀ¼ÆÏàÓ¦µÄ¸ÅÂʿɵÃ
P£¨A1£©=0.1+0.15+0.45=0.7£¬P£¨A2£©=0.25+0.4=0.65£®
P£¨A1£©£¾P£¨A2£©£¬ËùÒÔÓÃ1ºÅÏßÉú²ú¼×¹«Ë¾¶©¹ºµÄºÏ¸ñµÄ´óÐÍÉ豸£®
P£¨B1£©=1-0.1=0.9£¬P£¨B2£©=0.25+0.4+0.3=0.95£®
P£¨B2£©£¾P£¨B1£©£®
ËùÒÔÓÃ2ºÅÏßÉú²úÒÒ¹«Ë¾¶©¹ºµÄºÏ¸ñµÄ´óÐÍÉ豸£®£¨7·Ö£©
£¨2£©1ºÅÏßÓë2ºÅÏßÉú²úºÏ¸ñµÄ¸Ã´óÐÍÉ豸µÄÖÊÁ¿µÈ¼¶ÏµÊýµÄƽ¾ùÊý¶¼ÊÇ17£®
1ºÅÏßÉú²úºÏ¸ñµÄ¸Ã´óÐÍÉ豸µÄÖÊÁ¿µÈ¼¶ÏµÊýµÄ·½²îS${\;}_{1}^{2}$=$\frac{98}{3}$£¬
2ºÅÏßÉú²úºÏ¸ñµÄ¸Ã´óÐÍÉ豸µÄÖÊÁ¿µÈ¼¶ÏµÊýµÄ·½²îS${\;}_{2}^{2}$=$\frac{67}{3}$£¬
¡àS${\;}_{2}^{2}$£¼S${\;}_{1}^{2}$£®
ËùÒÔ1ºÅÏßÓë2ºÅÏßÉú²úºÏ¸ñµÄ¸Ã´óÐÍÉ豸µÄÖÊÁ¿µÈ¼¶ÏµÊýµÄƽ¾ùÊýÏàͬ£¬µ«2ºÅÏßÉú²úºÏ¸ñµÄ¸Ã´óÐÍÉ豸µÄÖÊÁ¿Îȶ¨ÐԽϸߣ®£¨12·Ö£©

µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²é¼«²î¡¢·½²îÓë±ê×¼²î¡¢·Ö²¼µÄÒâÒåºÍ×÷Óá¢ÖÚÊý¡¢ÖÐλÊý¡¢Æ½¾ùÊýµÈ»ù´¡ÖªÊ¶£®ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ô²£¨x-3£©2+£¨y+1£©2=1¹ØÓÚÖ±Ïßx+y-3=0¶Ô³ÆµÄÔ²µÄ±ê×¼·½³ÌÊÇ£¨x-4£©2+y2=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁи÷×麯ÊýÖбíʾͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=x-1Óëg£¨x£©=$\sqrt{{{£¨x-1£©}^2}}$B£®f£¨x£©=xÓëg£¨x£©=${£¨\sqrt{x}£©^2}$
C£®f£¨x£©=x2-xÓëg£¨t£©=t2-tD£®f£¨x£©=x-1Óëg£¨x£©=$\frac{{{x^2}-1}}{x+1}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èôº¯Êýf£¨x£©=x3+3x-1ÔÚÇø¼ä[n£¬n+1£©£¨n¡ÊZ£©ÉÏÓÐÁãµã£¬Ôòn=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖª½¹µãÔÚyÖáÉϵÄË«ÇúÏߵĽ¥½üÏß·½³ÌÊÇy=¡À4x£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\sqrt{17}$B£®$\sqrt{15}$C£®$\frac{\sqrt{17}}{4}$D£®$\frac{\sqrt{15}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÏÂÁÐÃüÌâÖУº
¢ÙÈô¼¯ºÏA={x|kx2+4x+4=0}ÖÐÖ»ÓÐÒ»¸öÔªËØ£¬Ôòk=1£»
¢ÚÒÑÖªx${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=2£¬Ôòx2-x-2=24
¢Ûº¯Êýy=$\frac{1}{1-x}$ÔÚ£¨-¡Þ£¬0£©ÉÏÊÇÔöº¯Êý£»
¢Ü·½³Ì2|x|=log2£¨x+2£©+1µÄʵ¸ùµÄ¸öÊýÊÇ2£®
ËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊǢۢܣ¨Ç뽫ËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®SnΪµÈ²îÊýÁÐ{an}µÄǰnÏîºÍ£¬a2+a8=6£¬ÔòS9=£¨¡¡¡¡£©
A£®108B£®54C£®27D£®$\frac{27}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¨µ¥Î»£ºcm£©£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{\sqrt{2}}{3}$cm3B£®$\frac{2\sqrt{2}}{3}$cm3C£®$\sqrt{2}c{m^3}$D£®$2\sqrt{2}c{m^3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªµãA£¬B·Ö±ðÊÇË«ÇúÏß$C£º\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨a£¾0£¬b£¾0£©$µÄ×ó¡¢ÓÒ¶¥µã£¬µãPÊÇË«ÇúÏßCÉÏÒìÓÚA£¬BµÄÁíÍâÒ»µã£¬ÇÒ¡÷ABPÊǶ¥½ÇΪ120¡ãµÄµÈÑüÈý½ÇÐΣ¬Ôò¸ÃË«ÇúÏߵĽ¥½üÏß·½³ÌΪ£¨¡¡¡¡£©
A£®$\sqrt{3}$x¡Ày=0B£®x¡À$\sqrt{3}$y=0C£®x¡Ày=0D£®$\sqrt{2}$x¡Ày=0

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸